Закон независимого наследования признаков и его цитологические основы

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Закон независимого наследования признаков и его цитологические основы». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

  • форма семени (круглая/некруглая);
  • окраска семени (желтая/зеленая)
  • кожура семени (гладкая/морщинистая) и т.д.

При скрещивании растений с гладкими и морщинистыми семенами все гибриды первого поколения оказались гладкими. Этот признак был назван доминантным.

Как сейчас известно, соматические клетки имеют, как правило, диплоидный (двойной) набор хромосом. Это означает, что аллельные гены – парные. Это могут быть две доминантные аллели (гомозигота по доминантному признаку), доминантная и рецессивная (гетерозигота) или две рецессивные (гомозигота по рецессивному признаку). Во время мейоза, когда образуются половые клетки (гаметы), в каждую из них попадает лишь одна из пары хромосом – один аллельный ген из каждой пары. Гомозиготная особь может дать только один сорт гамет — с доминантным или рецессивным признаком. А гетерозигота дает два сорта гамет в равных количествах – $50$% гамет с доминантным признаком, $50$% — с рецессивным.

В генетике принято доминирующий признак обозначать большой буквой латинского алфавита, а рецессивную – маленькой. Итак, вернемся к рассмотрению генетических и цитологических основ первого закона Менделя.

Для своих опытов ученый выбрал чистые линии растений с различной окраской семян. Потомство чистых линий – это гомозиготные организмы. Значит мы можем обозначить набор необходимых нам признаков в соматических клетках растения как «АА» и «аа». В ходе формирования половых клеток, каждое растение образует гаметы, несущие признаки, кторые мы обозначили как «А» или «а». При оплодотворении (слиянии гамет) образуется зигота с сочетанием аллелей «Аа». Это означает, что все гибриды первого поколения – гетерозиготы. Доминантная аллель проявляется в фенотипе, а рецессивная – нет. Поэтому все гибриды первого поколения будут иметь одинаковую окраску семян.

Аналогичным образом объясняется и принцип действия третьего закона Менделя. Если признаки кодируются генами, содержащимися в разных хромосомах, то они распределяются независимо один от другого.

Гомозизоты по доминантным признакам для дигибридного скрещивания (по двум признакам) можно обозначить так: «ААВВ». Гомозигота с рецессивными признаками обозначается «ааbb». При получении гибридов первого поколения ($F1$), все они будут иметь генотип «АаВb», а в фенотипе – все будут иметь оба доминирующих признака, подтверждая первый закон Менделя.

Гибриды первого поколения дают такую комбинацию генов в гаметах: «АВ», «Аb», «аВ» и «аb». При получении гибридов второго поколения ($F2$), происходит расщепление и комбинирование признаков. Мы получаем такие генотипы: «ААВВ», $2$«ААВb», «ААbb», $2$«АаВВ», $4$«АаВb», $2$«Ааbb», «ааВВ»,$ 2$«ааВb» и «ааbb».

При кажущейся хаотичности это расщепление строго упорядоченное. Если рассматривать каждый признак в отдельности, то получим точное соответствие второму закону Менделя. Поэтому третий закон гласит о независимом комбинировании признаков. По сути – это два моногибридных скрещивания.

  • Вконтакте
  • Сайт

Грегор Мендель для своих исследований избрал горох. Это растение довольно неприхотливо, быстро вегетирует и дает большое количество семян. Последнее обстоятельство очень важное для увеличения процента достоверности при статистической обработке.

Во времена Менделя еще ничего не было известно о генах. Механизм переноса наследственной информации оставался неизученным. Поэтому гениальные догадки Грегора Менделя не находили рационального подтверждения и объяснения. А в опытах с другими организмами Мендель не получил ожидаемого результата. Но он предложил закон (вернее, сначала он выдвинул гипотезу) чистоты гамет.

Этот закон утверждает, что у гибридного (гетерозиготного) организма гаметы «чистые». Это означает, что каждая из гамет не может одновременно нести два аллельных гена. А несет лишь один из определенной совокупности.

В генетике принято доминирующий признак обозначать большой буквой латинского алфавита, а рецессивную – маленькой. Итак, вернемся к рассмотрению генетических и цитологических основ первого закона Менделя.

Для своих опытов ученый выбрал чистые линии растений с различной окраской семян. Потомство чистых линий – это гомозиготные организмы. Значит мы можем обозначить набор необходимых нам признаков в соматических клетках растения как «АА» и «аа». В ходе формирования половых клеток, каждое растение образует гаметы, несущие признаки, кторые мы обозначили как «А» или «а». При оплодотворении (слиянии гамет) образуется зигота с сочетанием аллелей «Аа». Это означает, что все гибриды первого поколения – гетерозиготы. Доминантная аллель проявляется в фенотипе, а рецессивная – нет. Поэтому все гибриды первого поколения будут иметь одинаковую окраску семян.

Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.

Схематично дигибридное скрещивание выглядит так:

Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам:

  • форме (морщинистые и гладкие);
  • цвету (зеленые и желтые).

Данное скрещивание подразумевает определение признаков разными парами генов: одна отвечает за форму, а другая — за окраску. Гладкая форма семян (В) преобладает над морщинистой (b), а желтые горошины (А) доминируют над зелеными (а).

Законы Менделя

Первый закон Менделя.

Прежде чем проводить опыты, Г. Мендель получил чи­стые линии растений гороха с альтернативными признаками: гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом.

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (желтые) и генотипу (гетерозиготны) — закон единообразия гибридов первого поколения( первый закон). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализиру­емых по одной паре альтернативных признаков, наблюдает­ся единообразие гибридов первого поколения как по феноти­пу, так и по генотипу.

Условия выполнения первого закона Менделя.

Для проявления законов Менделя необходимо соблю­дение следующих условий;

— доминирование должно быть полным;

— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания по­томков с разными генотипами (не должно быть летальных генов).

Гипоте­за чистоты гамет.

Для объяснения установленных Менделем закономер­ностей наследования У. Бэтсоном была предложена гипоте­за чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Промежуточный характер наследования.

Доминантный ген не всегда полностью подавляет про­явление рецессивного гена. В этом случае гибриды первого поколения не воспроизводят признаки родителей — имеет место промежуточный характер наследования. Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу будет одинаковым (1:2:1).

Например, при скрещивании гомозиготных растений ноч­ной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (проме­жуточное наследование). Во втором поколении расщепле­ние по фенотипу и по генотипу, будет: 1 часть растений с красными цветками (доминантные гомозиготы), две — с розовыми (гетерозиготы) и одна — с белыми (рецессивные гомозиготы).

[2]

Р АА х аа Р Аа х Аа

Крас. Бел. Роз. Роз.

G А а G А а А а

Роз. Кр. Роз. Роз. Бел.

Второй закон Менделя.

При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается следующий ре­зультат:

Каждая из гетерозигот образует по два типа гамет, т.е. возможно получение четырех их сочетаний: 1АА, 2Аа, 1аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отношении 3:1 (три части потомков с желты­ми семенами и одна часть с — зелеными). По генотипу соот­ношение будет: 1АА (одна часть растений — гомозиготы по доминантному признаку): 2Аа (две части растений — гетерозиготы) : 1 аа (одна часть растений — гомозиготы по ре­цессивному признаку).

Второй закон Менделя — закон расщепления — форму­лируется следующим образом: при скрещивании гетерозигот­ных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Условия выполнения второго закона Менделя.

Для проявления законов Менделя необходимо соблю­дение следующих условий;

— доминирование должно быть полным;

— должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания по­томков с разными генотипами (не должно быть летальных генов);

Гипоте­за чистоты гамет.

Для объяснения установленных Менделем закономер­ностей наследования У. Бэтсоном была предложена гипоте­за чистоты гамет. Кратко ее можно свести к следующим положениям: 1) у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии; 2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Цитологические основы законов Менделя.

Цитологические основы законов Менделя составляют закономерности расхождения гомологичных хромосом и хроматид и образования гаплоидных половых клеток в процессе мейоза и случайное сочетание гамет при оплодотворении.

Анализи­рующее скрещивание.

Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализи­рующее скрещивание. Для этого данный организм скрещива­ют с рецессивным гомозиготным по данной аллели. Возмож­ны два варианта результатов скрещивания:

1) Р АА х аа 2) Р Аа х аа

Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь явля­ется гомозиготной, а если в F1 произойдет расщепление при­знаков 1:1, то — гетерозиготной.

Третий закон Менделя.

Если у родительских форм учитывают две пары альтернативных признаков, скрещивание называет­ся дигибридным.

Изучив наследование одной пары аллелей, Мендель проследил наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые гладкие (А, В — доминантные признаки) и зеленые морщинистые (a, b — рецессивные признаки).

Первый закон. Закон единообразия:

При скрещивании гомозиготных организмов, отличающихся друг от друга по одной (или нескольким) паре альтернативных признаков, все гибриды первого поколения единообразны по генотипу и фенотипу.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

1.Признаки в потомстве гибридов не исчезают, а перекомб-ся и перед-ся след.поколениям; 2.В основе такого наследования – сочетания двух факторов (равновероятн.обр-ие гамет А и а, равновероятн.их встреча). 3.Гипотеза «чистоты гамет» (гамета каждого из родителей несет по одному наследств.факторов).

ЗАКОН ЧИСТОТЫ ГАМЕТ. СУТЬ И ДОКАЗАТЕЛЬСТВА. «Гаметы каждого из родителей» несут только по одному из наследуемых факторов». Мендель не связывал наследств.факторы с конкретн.матер.структурами, цитологическое обоснование появл-ся позже: Во время мейоза у гибрида F1(Аа) разн.пары хромосом расх-ся в дочерн.клетки независимо =>при случ.оплодотворении – 3 типа зигот (АА, Аа и аа). Др.док-во – тетрадный анализ (у мхов гетерозиг. Аа клетка дает тетраду гаплоидных спор. У половины развившихся из спор организмов генотип – А, у половины – а).

[3]

Цитологические основы: 1.Независимое расхождение хромосом в гаметы у представителей F1 =>по одному типу аллелей в каждой гамете; 2. Равновероятная встреча гамет, несущих доминантный или рецессивный аллель.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

3.5 Закономерности наследственности, их цитологические основы

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого наследования его цитологические основы

Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.

К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный. Другие признаки, присущие данным организмам, во внимание не берутся.

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

Анализируя полученные результаты, сначала рассмотрим количество возможных фенотипов в поколении F2 , которое дало данное дигибридное скрещивание. Мендель сомневался, увидит ли он только два родительских фенотипа: с круглыми жёлтыми и морщинистыми зелёными семенами, или дополнительно появиться круглые зелёные, морщинистые желтые семена.

Если бы признаки наследовались сцеплено, то образовалось бы только два типа гамет: RY и ry. Но в случае с горохом и признаками, выбранными Менделем наследование происходило независимо, поэтому у родителей второго поколения образовалось 4 типа гамет: RY, ry, Ry и rY. Так проявился уже знакомый нам закон расщепления.

Чтобы рассмотреть все варианты возможного потомства, удобно построить решетку Пеннета. Это квадрат 4х4 с 16 возможными результатами. Из неё мы видим, что есть 9 растений с круглыми желтыми, 3 с морщинистыми желтыми, 3 с круглыми зелеными и 1 с морщинистыми зелеными семенами. Это демонстрирует фенотипическое соотношение 9:3:3:1, характерное для признаков, которые ведут себя независимо.

R: ♀ RrYy ♂ RrYy
G: RY, ry, Ry, rY RY, ry, Ry, rY

Решётка Пеннета

RY ry Ry rY
RY RRYY RrYy RRYy RrYY
ry RrYy rryy Rryy rrYy
Ry RRYy Rryy RRyy RrYy
rY RrYY rrYy RrYy rrYY

Что же на самом деле наблюдал Мендель? Из 556 семян, полученных при дигибридном скрещивании, он увидел следующие фенотипические результаты:

  • 315 круглых жёлтых (обозначаются R_Y_, где подчёркивание указывает на наличие любого аллеля);
  • 108 круглых зелёных (R_ yy);
  • 101 морщинистых жёлтых (rr Y__);
  • 32 морщинистых зелёных (rr yy).

Закономерности наследования признаков

К независимому наследованию приводит поведение хромосом во время мейоза. Гены двух разных пар признаков находятся в негомологичных хромосомах. У гомозиготных особей образуется только один тип гамет, содержащих по одной из каждой пары негомологичных хромосом. В процессе оплодотворения диплоидный набор хромосом восстанавливается. Генотип гибридов первого поколения представлял собой следующее сочетание RrYy (или АаВв, чтобы проследить по иллюстрации).

Так как негомологичные хромосомы расходятся произвольно, то гибридные особи дают 4 типа гамет: Ав, АВ, аВ, ав. Попарное слияние этих типов гамет при оплодотворении даёт 16 возможных вариантов зигот.

Для объяснения результатов скрещивания, проведенного Г. Менделем, У. Бэтсон (1902) предложил гипотезу «чистоты гамет». Ее можно свести к следующим двум основным положениям:

  • у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;
  • из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом или хроматид при мейозе.

Число пар генов и соответствующих им признаков, по которым организмы отличаются друг от друга, часто бывает больше двух. Анализ данных по большому количеству аллельных пар называют полигибридным скрещиванием.

При таком анализе приходится изучать большое количество генотипов и фенотипов. Но закономерности, которым подчиняется их наследование часто бывает таким же как при моно- и дигибридном скрещивании.

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т. е. они присущи всем живым организмам. Для проявления третьего закона Менделя необходимо соблюдение ряда условий:

  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

В основе независимого наследования генов разных аллельных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно независимы друг от друга.

Дигибридное скрещивание. Закон независимого наследования. Урок 3

Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя. Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие — зеленые. После перекрестного опыления получаются гибриды первого поколения (F1). Все они имели желтый цвет семян, т. е. были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез.

III-закон Г.Менделя Закон независимого наследования признаков. При дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга Для того, чтобы понять как будет происходить комбинация признаков при скрещивании гибридов, американский исследователь Реджинальд Пеннет предложил заносить результаты опыта в таблицу, которую назвали решеткой Пеннета.

Третий закон Менделя (независимого наследования признаков) – при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов — 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Изучая рас­щепление при дигибридном скрещива­нии, Мендель обнаружил, что призна­ки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбиниро­вания признаков, формулируется сле­дующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтерна­тивных признаков, во втором поколе­нии F2) наблюдается независимое на­следование и комбинирование призна­ков, если гены, определяющие их, рас­положены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВb). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b. Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b. Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, Аb, аВ, аb. Всех типов гамет будет поров­ну (по 25%).

Это несложно объяснить поведением хромосом при мейозе. Негомологич­ные хромосомы при мейозе могут ком­бинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А,равновероятно может отойти в гаме­ту как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b. Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь обра­зует 4 типа гамет. Естественно, что при скрещивании этих гетерозигот­ных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех ти­пов гамет, сформированных другим родителем, т. е. возможны 16 комби­наций. Такое же число комбинаций следует ожидать по законам комбина­торики.

При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в на­шем примере — кареглазые правши), в 3—первый признак доминантный, второй рецессивный b, в нашем при­мере — кареглазые левши), еще в 3 — первый признак рецессивный, вто­рой — доминантный (аВ, т. е. голубо­глазые правши), а в одной — оба при­знака рецессивные b, в данном слу­чае — голубоглазый левша). Произош­ло расщепление по фенотипу в соот­ношении 9:3:3:1.

Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3 : 1.

В нашем примере при расщеплении по окраске глаз получается соотно­шение: кареглазых 12/16, голубогла­зых 4/16, по другому признаку — правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.

Законы независимого наследования

Моногенные наследственные болезни также называют менделирующими, потому что они наследуются согласно правилам, которые установил Грегор Мендель в 1865 г.

Основная заслуга Менделя заключается в том, что он на основе количественной оценки результатов расщепления потомства гибридов гороха по разным качественным признакам предположил наличие элементарных единиц наследственности, названных генами. В научной литературе к заслугам Г. Менделя относят также установление ряда правил наследования признаков, часть из которых на самом деле была обнаружена предшественниками Г. Менделя.

Первое правило — правило доминирования. Его суть сводится к тому, что из двух копий каждого гена, которые называются аллелями и содержатся в каждой клетке, одна может подавлять или маскировать проявление второй копии (аллеля). Если аллели гена одинаковы, особь с таким генотипом называют гомозиготной, а если они разные — гетерозиготной. Следовательно, доминантный аллель определяет характер признака, даже находясь в гетерозиготном состоянии, а рецессивный (маскированный) аллель определяет характер признака только тогда, когда он находится в гомозиготном состоянии. Соответственно все менделирующие наследственные болезни делятся на доминантные и рецессивные. Если у гетерозиготной особи проявляются оба аллеля, т. е. нет доминирования одного аллеля над другим, то такие аллели называют кодоминантными. Хорошо известным примером кодоминирования являются аллели А и В группы крови АВ0. Улице IV группой крови проявляются антигены как А, так и В.

Г. Мендель также предположил, что в половые клетки родителей случайно попадает один из аллелей каждого гена, поэтому 50% гамет несет один аллель, а вторые 50% — другой. Это утверждение называют вторым правилом Менделя или правилом расщепления. Если оба родителя гетерозиготны по какому-то гену, то в потомстве таких родителей будет наблюдаться расщепление и 3/4 потомков будут иметь доминантный признак и только 1/4 — рецессивный, что обусловлено случайным объединением гамет родителей, имеющих разные аллели гена. При этом расщепление по генотипу будет иным, а именно 1:2: 1. Соответственно, если только один родитель гетерозиготен, а второй гомозиготен по рецессивному гену, расщепление по наличию доминантного и рецессивного признаков будет 1:1. Если один родитель гомозиготен, а второй гетерозиготен по доминантному гену, то фенотипически все потомство будет иметь только доминантный признак. Для понимания того, как действует правило расщепления, лучше всего воспользоваться решеткой Пеннета, которую этот английский генетик предложил для графического представления результатов различных скрещиваний (см. табл.).

Решетка Пеннета, отражающая результаты расщепления в потомстве от брака двух гетерозиготных родителей

Решетка Пеннета, отражающая результаты расщепления в потомстве от брака родителей, один из которых гетерозиготен, а второй гомозиготен по рецессивному гену

Решетка Пеннета, отражающая результаты расщепления в потомстве от брака родителей, один из которых гетерозиготен, а второй гомозиготен по доминантному гену

Г. Менделю было ясно, что наблюдаемые расщепления в потомстве от скрещиваний родителей с разными генотипами являются событиями с определенной долей вероятности и их можно выявить только на большом числе потомков. Из теории вероятности следуют два правила — правило умножения и правило сложения вероятностей.

Правило умножения гласит, что если какие-то события наблюдаются независимо друг от друга, то вероятность того, что два события будут происходить одновременно, равна произведению вероятностей этих событий. Вероятность образования гамет с рецессивным геном у родителей, гетерозиготных по этому гену, составляет 1/2 для каждого родителя. Вероятность встречи таких гамет с рецессивным геном при образовании зигот будет равна произведению вероятностей образования таких гамет у каждого из родителей, т. е. 1/2 х 1/2 = 1/4 (25% от всех потомков).

Правило сложения гласит, что если нужно узнать вероятность реализации либо одного, либо другого события, то вероятности каждого из этих событий складываются. Таким образом, если нас будет интересовать вероятность гомозиготного потомства в браке гетерозиготных родителей, то надо сложить вероятности рецессивных и доминантных гомозигот, т. е. 1/4 + 1/4 = 1/2.

Этими правилами довольно часто приходится пользоваться врачам-генетикам во время медико-генетического консультирования при расчете вероятностей тех или иных событий в семьях, имеющих больного наследственным заболеванием ребенка.

Третье правило Менделя, или правило независимого комбинирования: гены, определяющие различные признаки, наследуются независимо друг от друга. Видно, что это правило относится не к наследованию альтернативных состояний одного признака, а к двум и большему числу признаков.

Приведем пример расщепления в потомстве от брака родителей, гетерозиготных по двум генам одновременно (АаВ b ), причем каждый из этих генов влияет на разные признаки. Проще всего это сделать, используя решетку Пеннета (см. табл).

В потомстве от брака двойных гетерозигот наблюдается четыре фенотипа: доминантный по обоим признакам, доминантный либо по одному, либо по другому признаку, рецессивный либо по одному, либо по другому признаку, рецессивный по обоим признакам одновременно. Соотношения между этими фенотипами в том порядке, как они записаны выше, составляют 9:3:3:1. Эти соотношения легко получить, перемножая вероятности соответствующих фенотипов при моногибридном расщеплении. Так, вероятность доминантного фенотипа для каждого пр��знака в моногибридном скрещивании составляет 3/4. При их независимости друг от друга вероятность их совместного проявления будет равна 3/4 х 3/4 = 9/16. Соотношение генотипов при дигибридном скрещивании иное, чем соотношение фенотипов.

Специфика действия менделевских правил в медицинской генетике

Основные понятия и ключевые термины: Дигибридное скрещивание. ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ. Анализирующее скрещивание.

Вспомните! Как формулируются I и II законы Менделя?

Как происходит наследование двух признаков?

Дигибридное скрещивание — это скрещивание родительских особей, которые отличаются проявлениями двух признаков. Для изучения того, как наследуются два признака, Г. Мендель выбрал окраску семян гороха и форму горошин (ил. 90). Цвет семян гороха, как вы знаете, имеет два проявления — доминантное жёлтое и рецессивное зелёное. Форма семян бывает гладкой (доминантное проявление) и морщинистой (рецессивное проявление).

Бытовые услуги • Телекоммуникационные компании • Доставка готовых блюд • Организация и проведение праздников • Ремонт мобильных устройств • Ателье швейные • Химчистки одежды • Сервисные центры • Фотоуслуги • Праздничные агентства

  • Естествознание
    • Физика
    • Математика
    • Химия
    • Биология
    • Экология
  • Обществознание
    • Обществознание — как наука
    • Иностранные языки
    • История
    • Психология и педагогика
    • Русский язык и литература
    • Культурология
    • Экономика
    • Менеджмент
    • Логистика
    • Статистика
    • Философия
    • Бухгалтерский учет
  • Технические науки
    • Черчение и инженерная графика
    • Материаловедение
    • Сварка
    • Электротехника и электроника
    • АСУТП и КИПИА
    • Технологии
    • Теоретическая механика и сопромат
    • САПР
    • Метрология, стандартизация и сертификация
    • Геодезия и маркшейдерия
  • Программирование и сеть
    • Информатика
    • Языки программирования
    • Алгоритмы и структуры данных
    • СУБД
    • Web разработки и технологии
    • Архитектура ЭВМ и основы ОС
    • Системное администрирование
    • Создание программ и приложений
    • Создание сайтов
    • Тестирование ПО
    • Теория информации и кодирования
    • Функциональное и логическое программирование


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *