Сущность законов наследования у человека

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Сущность законов наследования у человека». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Закономерности наследования признаков

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

  • Естествознание
    • Физика
    • Математика
    • Химия
    • Биология
    • Экология
  • Обществознание
    • Обществознание — как наука
    • Иностранные языки
    • История
    • Психология и педагогика
    • Русский язык и литература
    • Культурология
    • Экономика
    • Менеджмент
    • Логистика
    • Статистика
    • Философия
    • Бухгалтерский учет
  • Технические науки
    • Черчение и инженерная графика
    • Материаловедение
    • Сварка
    • Электротехника и электроника
    • АСУТП и КИПИА
    • Технологии
    • Теоретическая механика и сопромат
    • САПР
    • Метрология, стандартизация и сертификация
    • Геодезия и маркшейдерия
  • Программирование и сеть
    • Информатика
    • Языки программирования
    • Алгоритмы и структуры данных
    • СУБД
    • Web разработки и технологии
    • Архитектура ЭВМ и основы ОС
    • Системное администрирование
    • Создание программ и приложений
    • Создание сайтов
    • Тестирование ПО
    • Теория информации и кодирования
    • Функциональное и логическое программирование

    База современной генетики была заложена в XIX веке исследованиями нескольких европейских ученых. Результаты этих работ были обобщены Георгом Менделем, который на их основании сформулировал несколько гипотез. Дальнейшее развитие науки подтвердило его правоту.

    Грегор Иоганн Мендель

    Грегор Мендель (1822-1884) — австрийский биолог и ботаник, создатель учения о наследственности. Проведенные им опыты по скрещиванию и гибридизации растений заложили основы современной генетики. Стремясь изучить механизм наследования и передачу отдельных признаков, он провел широкомасштабный опыт на разных видах гороха, исследовав в общей сложности около 20 000 гибридов. В результате он сформулировал несколько базовых принципов, получивших впоследствии название «Законы Менделя».

    В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

    Настоящее признание к нему пришло уже после смерти, в начале XX века, когда генетика стала оформляться как самостоятельное направление в биологии. В это время несколько ученых самостоятельно друг от друга пришли к тем же выводам, что и Грегор Мендель, и открытые им принципы пережили второе рождение.

    Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

    Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

    Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

    В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

    Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

    Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

    Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

    Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

    По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

    Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

    Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

    Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 4 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

    Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 4:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

    Источник

    Основные понятия генетики

    Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

    Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

    Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

    Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

    Фенотип — совокупность всех внешних и внутренних признаков организма.

    Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

    Генотип — совокупность генов организма.

    Локус — местоположение гена в хромосоме.

    Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

    Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

    Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

    Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

    Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

    Сущность законов наследования признаков у человека законы менделя

    Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…



    Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

    Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

    • Геометрия
    • Информатика
    • Математика
    • Алгебра
    • Алгебра и начала математического анализа
    • Изобразительное искусство
    • Музыка
    • Испанский язык
    • Английский язык
    • Немецкий язык
    • Французский язык
    • Русский язык
    • Литература
    • Литературное чтение
    • История
    • География
    • Обществознание
    • Экология
    • Россия в мире
    • Право
    • Окружающий мир
    • Экономика
    • Технология (мальчики)
    • Технология
    • Технология (девочки)

    Урок № 3

    Закономерности наследования признаков.

    Для изучения медицинской генетики необходимо знать основные термины и понятия, которые используются и в общей генетике.

    Наследственность – это свойство живых организмов сохранять генетическую информацию и признаки предков и передавать их в ряду поколений.

    Наследование – это процесс воспроизведения признаков предков в последовательных поколениях.

    Гомологичные хромосомы – одинаковые по размерам, по форме, по составу генов, но разные по происхождению: одна – от отца, другая – от матери.

    Ген – это участок молекулы ДНК, кодирующий первичную структуру полипептида.

    Аллельные гены – гены, которые локализованы в гомологичных хромосомах в одинаковых локусах и кодируют один и тот же признак или его вариации.

    Гомозигота – организм, в котором данная пара аллельных генов одинакова: АА или аа.

    Гетерозигота – организма, в котором пара аллелей неодинакова Аа.

    Гемизигота (от греч. hemi – полу- и зигота) – когда в диплоидном организме присутствует одни ген из пары аллелей и он всегда проявляется. Например, в Х-хромосоме у мужчин в локусе, которого нет в Y-хромосоме, находится один ген гемофилии, а в Y-хромосоме такой ген отсутствует.

    Доминантный ген (от лат. dominans – господствующий)- преобладающий, который подавляет проявление других аллелей, обозначают прописной буквой латинского алфавита.

    выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

    – форма семени (круглая / некруглая);

    – окраска семени (желтая / зеленая);

    – кожура семени (гладкая / морщинистая) и т.д.

    При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами (назвал этот признак доминантным).

    Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).

    1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения оказываются по этим признакам единообразными и похожими на родителя с доминантным признаком.

    В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фенотипу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться.

    2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1

    Аа × аа → 50% Аа и 50% аа

    При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3 : 1 по фенотипу и 1: 2 :1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.

    Появляются семена как с желтой, так и с зеленой окраской.

    (закон независимого наследования при дигибридном (полигибридном) скрещивании): выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.

    Для дальнейшей записи используется решетка Пеннета.

    Во втором поколении возможно появление 4 фенотипов в отношении 9 : 3 : 3 : 1 и 9 генотипов.

    В результате анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

    – для диплоидных организмов;

    – для генов, расположенных в разных гомологичных хромосомах;

    – при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

    Указанные условия являются цитологическими основами дигибридного (и полигибридного) скрещивания.

    В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.

    В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.

    Так как события случайны, то закономерность носит статистический характер, т.е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.

    Основоположник хромосомной теории Томас Гент Морган и его ученики установили, что:

    – каждый ген имеет в хромосоме определенный локус (место);

    – гены в хромосоме расположены в определенной последовательности;

    – наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

    – группы генов, расположенных в одной хромосоме, образуют группы сцепления;

    – число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

    – между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

    – частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

    – набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

    – частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

    Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

    Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности.

    Важнейшее следствие этой теории:

    современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

    Основные законы наследования и наследственности

    Генетика — наука, изучающая наследственность и изменчивость организмов.
    Наследственность — способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
    Изменчивость — способность организмов приобретать новые признаки. Наследственность и изменчивость — два противоположных, но взаимосвязанных свойства организма.

    Основные понятия
    Ген и аллели. Единицей наследственной информации является ген.
    Ген (с точки зрения генетики) — участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
    Аллели — различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

    Признак (фен) — некоторое качество или свойство, по которому можно отличить один организм от другого.
    Доминирование — явление преобладания у гибрида признака одного из родителей.
    Доминантный признак — признак, проявляющийся в первом поколении гибридов.
    Рецессивный признак — признак, внешне исчезающий в первом поколении гибридов.

    Признаки
    доминантные рецессивные
    Карликовость Нормальный рост
    Полидактилия (многопалость) Норма
    Курчавые волосы Прямые волосы
    Не рыжие волосы Рыжие волосы
    Раннее облысение Норма
    Длинные ресницы Короткие ресницы
    Крупные глаза Маленькие глаза
    Карие глаза Голубые или серые глаза
    Близорукость Норма
    Сумеречное зрение (куриная слепота) Норма
    Веснушки на лице Отсутствие веснушек
    Нормальная свёртываемость крови Слабая свёртываемость крови (гемофилия)
    Цветовое зрение Отсутствие цветового зрения (дальтонизм)

    Доминантный аллель — аллель, определяющий доминантный признак. Обозначается латинской прописной буквой: А, B, С, … .
    Рецессивный аллель — аллель, определяющий рецессивный признак. Обозначается латинской строчной буквой: а, b, с, … .
    Доминантный аллель обеспечивает развитие признака как в гомо-, так и в гетерозиготном состоянии, рецессивный аллель проявляется только в гомозиготном состоянии.
    Гомозигота и гетерозигота. Организмы (зиготы) могут быть гомозиготными и гетерозиготными.
    Гомозиготные организмы имеют в своем генотипе два одинаковых аллеля — оба доминантные или оба рецессивные (АА или аа).
    Гетерозиготные организмы имеют один из аллелей в доминантной форме, а другой — в рецессивной (Аа).
    Гомозиготные особи не дают расщепления в следующем поколении, а гетерозиготные дают расщепление.
    Разные аллельные формы генов возникают в результате мутаций. Ген может мутировать неоднократно, образуя много аллелей.
    Множественный аллелизм — явление существования более двух альтернативных аллельных форм гена, имеющих различные проявления в фенотипе. Два и более состояний гена возникают в результате мутаций. Ряд мутаций вызывает появление серии аллелей (А, а1, а2, …, аn и т. д.), которые находятся в разных доминантно-рецессивных отношениях друг к другу.
    Генотип — совокупность всех генов организма.
    Фенотип — совокупность всех признаков организма. К ним относятся морфологические (внешние) признаки (цвет глаз, окраска цветков), биохимические (форма молекулы структурного белка или фермента), гистологические (форма и размер клеток), анатомические и т. д. С другой стороны, признаки можно разделить на качественные (цвет глаз) и количественные (масса тела). Фенотип зависит от генотипа и условий внешней среды. Он развивается в результате взаимодействия генотипа и условий внешней среды. Последние в меньшей степени влияют на качественные признаки и в большей степени — на количественные.
    Скрещивание (гибридизация). Одним из основных методов генетики является скрещивание, или гибридизация.
    Гибридологический метод — скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или нескольким признакам.
    Гибриды — потомки от скрещиваний организмов, отличающихся друг от друга по одному или нескольким признакам.
    В зависимости от числа признаков, по которым различаются между собой родители, выделяют разные виды скрещивания.
    Моногибридное скрещивание — скрещивание, при котором родители различаются только по одному признаку.
    Дигибридное скрещивание — скрещивание, при котором родители различаются по двум признакам.
    Полигибридное скрещивание — скрещивание, при котором родители различаются по нескольким признакам.
    Для записи результатов скрещиваний используются следующие общепринятые обозначения:
    Р — родители (от лат. parental — родитель);
    F — потомство (от лат. filial — потомство): F1 — гибриды первого поколения — прямые потомки родителей Р; F2 — гибриды второго поколения — потомки от скрещивания между собой гибридов F1 и т. д.
    ♂ — мужская особь (щит и копьё — знак Марса);
    ♀ — женская особь (зеркало с ручкой — знак Венеры);
    X — значок скрещивания;
    : — расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.
    Гибридологический метод был разработан австрийским естествоиспытателем Г. Менделем (1865). Он использовал самоопыляющиеся растения гороха садового. Мендель провёл скрещивание чистых линий (гомозиготных особей), отличающихся друг от друга по одному, двум и более признакам. Им были получены гибриды первого, второго и т. д. поколений. Полученные данные Мендель обработал математически. Полученные результаты были сформулированы в виде законов наследственности.

    А1. Доминантный аллель – это

    1) пара одинаковых по проявлению генов

    2) один из двух аллельных генов

    3) ген, подавляющий действие другого гена

    4) подавляемый ген

    А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

    1) нескольких признаках организма

    2) одном признаке организма

    3) нескольких белках

    4) молекуле т-РНК

    А3. Если признак не проявляется у гибридов первого поколения, то он называется

    1) альтернативным

    2) доминантным

    3) не полностью доминирующим

    4) рецессивным

    А4. Аллельные гены расположены в

    1) идентичных участках гомологичных хромосом

    2) разных участках гомологичных хромосом

    3) идентичных участках негомологичных хромосом

    4) разных участках негомологичных хромосом

    А5. Какая запись отражает дигетерозиготный организм:

    А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

    1) белая, шаровидная

    2) желтая, шаровидная

    3) желтая дисковидная

    4) белая, дисковидная

    А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

    3) 50% ВВ и 50% Вв

    4) 75% ВВ и 25% Вв

    А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

    А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

    Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

    Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

    Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

    С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

    Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 — с рецессивным проявлением признака.

    Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

    Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа : 1/2 аа.

    Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

    Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 — 3:1, 1:2:1, 2:1, а в анализирующем скрещивании — 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

    Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А — по гену А, по признаку В — по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb : 3/ 16 ааВ- : 3/16 ааbb.

    При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4 : 1/4.

    Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

    (3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

    В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

    Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, — в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

    Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

    Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

    Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

    Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента — у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента — у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще — глаза бесцветные (белые).

    Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

    Законы Менделя

    Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

    Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА : 2/4 Аа : 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа : 1/3 аа.

    Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

    Представления о передаваемых по наследству признаках у человека существовали уже в античные времена. Такие сообщения встречаются в трудах Гиппократа, Аристотеля, Платона и других древнегреческих врачей и философов. Несмотря на немногочисленность упоминаний о наследственности в античной литературе и их упрощенную трактовку, все же это был новый взгляд на человека.

    После эпохи Возрождения интерес к природе человека возрастал. Так, в работе испанского врача Меркадо (1605 г.) содержится утверждение, что оба родителя, а не только отец, определяют, каким будет будущий ребенок. Уже в XVIII — начале XIX вв. появились работы, дающие правильную оценку наследственным заболеваниям, характеру их передачи. В 1752 г. в работе Мопертюи сообщалось о семье, где в четырех поколениях имела место полидактилия. Наблюдения за этой семьей позволили автору сделать вывод о том, что данный порок развития в равной степени передавался и отцом и матерью, а расчеты показали, что высокую частоту этой патологии нельзя объяснить только случайностью.

    Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

    Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

    Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

    Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

    Фенотип — совокупность всех внешних и внутренних признаков организма.

    Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

    Генотип — совокупность генов организма.

    Локус — местоположение гена в хромосоме.

    Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

    Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

    Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

    Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

    Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

    Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

    Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

    Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

    Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

    ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ. ГЕНЫ В СЕМЬЯХ

    Другие материалы по теме:

    Тема 2. Законы Менделя из книги «Генетика и селекция»

    Книга «Сборник задач по генетике с решениями»

    Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

    Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

    Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

    Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

    Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

    Признаки Доминантные Рецессивные Всего
    Число % Число %
    Форма семян 5474 74,74 1850 25,26 7324
    Окраска семядолей 6022 75,06 2001 24,94 8023
    Окраска семенной кожуры 705 75,90 224 24,10 929
    Форма боба 882 74,68 299 25,32 1181
    Окраска боба 428 73,79 152 26,21 580
    Расположение цветков 651 75,87 207 24,13 858
    Высота стебля 787 73,96 277 26,04 1064
    Всего: 14949 74,90 5010 25,10 19959

    Анализ данных таблицы позволил сделать следующие выводы:

    1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
    2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
    3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

    Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

    Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

    Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

    При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

    У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

    Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

    Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

    Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *