Законы наследования признаков установленные г. менделем

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Законы наследования признаков установленные г. менделем». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Грегор Мендель (1822-1884) — австрийский биолог и ботаник, создатель учения о наследственности. Проведенные им опыты по скрещиванию и гибридизации растений заложили основы современной генетики. Стремясь изучить механизм наследования и передачу отдельных признаков, он провел широкомасштабный опыт на разных видах гороха, исследовав в общей сложности около 20 000 гибридов. В результате он сформулировал несколько базовых принципов, получивших впоследствии название «Законы Менделя».

В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

Настоящее признание к нему пришло уже после смерти, в начале XX века, когда генетика стала оформляться как самостоятельное направление в биологии. В это время несколько ученых самостоятельно друг от друга пришли к тем же выводам, что и Грегор Мендель, и открытые им принципы пережили второе рождение.

Законы Менделя кратко и понятно

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

  • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
  • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

  • Изучение большого числа потомков или скрещиваний.
  • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
  • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
  • У разных генотипов должна быть одинаковая выживаемость.

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 4 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

  • Желтые гладкие (ААВВ и др.) — 4 шт.
  • Желтые морщинистые (ААbb и др.) — 3 шт.
  • Зеленые гладкие (aaВВ и др.) — 3 шт.
  • Зеленые морщинистые (ааbb) — 1 шт.

Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 4:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

feniks.help — Скорая помощь студентам

Законы Менделя

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Закономерности наследования признаков

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха — с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения, который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков. Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…



Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

  • желтый цвет и гладкие семена;

  • желтый цвет и ребристые семена;

  • зеленый цвет и гладкие семена;

  • зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

3.5. Закономерности наследственности

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

  • форма семени (круглая/некруглая);
  • окраска семени (желтая/зеленая)
  • кожура семени (гладкая/морщинистая) и т.д.

При скрещивании растений с гладкими и морщинистыми семенами все гибриды первого поколения оказались гладкими. Этот признак был назван доминантным.

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон чистоты гамет — в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный закон носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Гипотезу (теперь её называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный
  7. Признак не сцеплен с половыми хромосомами
  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

1. Моногибридное. Наблюдение ведется только по одному признаку, т.е. отслеживаются аллели одного гена.
2. Дигибридное. Наблюдение ведется по двум признакам, те.е отслеживаются аллели двух генов.

Р – родители; F – потомство, число указывает на порядковый номер поколения, F1, F2.

Х – значок скрещивания, мужские особи, женские особи; А, а, В, в, С, с – отдельно взятые наследственные признаки. А, В, С – доминантные аллели гена, а, в, с – рецессивные аллели гена. Аа – генотип, гетерозигота; аа – рецессивная гомозигота, АА – доминантная гомозигота.

Классическим примером моногибридного скрещивания является скрещивание сортов гороха с желтыми и зелеными семенами: все потомки имели желтые семена. Мендель пришел к выводу, что у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один – доминантный, а второй – рецессивный – не развивается, как бы исчезает.

Р АА * аа – родители (чистые линии)

А, а – гаметы родителей

Аа – первое поколение гибридов

Эта закономерность была названа законом единообразия гибридов первого поколения или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Семена гибридов первого поколения использовались Менделем для получения вроторого гибридного поколения. При скрещивании происходит расщепление признаков в определенном числовом отношении. Часть гибридов несет доминантный признак, часть – рецессивный.

F1 Аа * Аа А, а, А, а F2 АА (0,25); Аа (0,25); Аа (0,25); аа (0,25)

В потомстве происходит расщепление признаков в соотношении 3:1.

Для объяснения явлений доминирования и расщепления Мендель предложил ипотезу чистоты гамет: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Второй закон Менделя
можно сформулировать: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу – 1:2:1.

Третий закон Менделя
: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает с ними разные сочетания. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т.е. находятся в негомологичных хромосомах.

Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие, желтые семена, а другое морщинистые и зеленые. В первом поколении гибридов растения имели гладкие и желтые семена. Во втором поколении произошло расщепление по фенотипу 9:3:3:1.

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

Грегор Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, так как о гене тогда еще не существовало понятия.

Закономерности наследственности

Формулировка закона

Схема скрещивания

Первый закон Менделя. Правило единообразия первого поколения или закон доминирования.

Грегор Мендель, 1865г.

  • Естествознание
    • Физика
    • Математика
    • Химия
    • Биология
    • Экология
  • Обществознание
    • Обществознание — как наука
    • Иностранные языки
    • История
    • Психология и педагогика
    • Русский язык и литература
    • Культурология
    • Экономика
    • Менеджмент
    • Логистика
    • Статистика
    • Философия
    • Бухгалтерский учет
  • Технические науки
    • Черчение и инженерная графика
    • Материаловедение
    • Сварка
    • Электротехника и электроника
    • АСУТП и КИПИА
    • Технологии
    • Теоретическая механика и сопромат
    • САПР
    • Метрология, стандартизация и сертификация
    • Геодезия и маркшейдерия
  • Программирование и сеть
    • Информатика
    • Языки программирования
    • Алгоритмы и структуры данных
    • СУБД
    • Web разработки и технологии
    • Архитектура ЭВМ и основы ОС
    • Системное администрирование
    • Создание программ и приложений
    • Создание сайтов
    • Тестирование ПО
    • Теория информации и кодирования
    • Функциональное и логическое программирование

    ВАЖНО!

    1. Генетика – это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы
    2. Гены определяют признаки.
    3. Закон единообразия гибридов первого поколения, которое утверждает, что в первом поколении гибридов проявляется только доминантный признак
    4. Закон расщепления гласит, что в потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения (F2) имеет рецессивный признак, три четверти — доминантный
    5. Открытые Г. Менделем законы универсальны, они приемлемы для животных, растений и для человека.
    6. Законы Г. Менделя являются научной основой для селекции. Закономерности наследования имеют большое значение в области генетики человека.
    • Геометрия
    • Информатика
    • Математика
    • Алгебра
    • Алгебра и начала математического анализа
    • Изобразительное искусство
    • Музыка

    Закономерности наследования признаков, установленные Г. Менделем

    • Основы безопасности жизнедеятельности
    • Физическая культура
    • Русский язык
    • Литература
    • Литературное чтение
    • История
    • География
    • Обществознание
    • Экология
    • Россия в мире
    • Право
    • Окружающий мир
    • Экономика

    Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

    С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

    Мендель проанализировал закономерности наследования как в тех случаях, когда родительские организмы отличались по одной альтернативной паре (моногибридное скрещивание), так и в тех случаях, когда они отличались по нескольким альтернативным парам признаков (ди, три, поли гибридное скрещивание).

    По уровню развития науки своего времени Мендель не мог еще связать наследственные факторы с определенными структурами клетки. В настоящее время установлено, что гены находятся в хромосомах, поэтому при объяснении закономерностей Менделя мы будем исходить из современных цитологических представлений о материальных носителях наследственности.

    В основе метода лежат следующие положения:

    1. Учитывается не весь многообразный комплекс признаков у родителей и гибридов, а анализируется наследование по отдельным альтернативным признакам.
    2. Проводится точный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений: прослеживается не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности. Гибридологический метод нашел широкое применение в науке и практике.

    Объектом для исследования Мендель избрал горох, имеющий много сортов, отличающихся альтернативными признаками. Выбор объекта оказался удачным, так как наследование признаков у гороха происходит очень четко.

    Горох обычно самоопыляемое растение (но легко опыляется и перекрестно), поэтому у Менделя была возможность проанализировать потомство как каждой особи отдельно, так и в результате перекрестного скрещивания.

    Прежде, чем начать опыты, Мендель тщательно проверил чистосортность своего материала. Использованные им сорта он высевал в течение нескольких лет, и лишь убедившись в однородности (гомозиготности) материала, приступил к эксперименту.

    В опытах Менделя при моногибридном скрещивании сортов гороха, имеющих желтые и зеленые семена, все потомство (т. е. гибриды первого поколения) оказалось с желтыми семенами. При этом не играло роли, из каких именно семян (желтых или зеленых) выросли материнские (отцовские) растения. Следовательно, оба родителя в одинаковой мере способны передавать свои признаки потомству.

    «Задатки» признаков (по современной, терминологии — гены) Мендель предложил обозначать буквами латинского алфавита. Гены, относящиеся к одной паре, принято обозначать одной и той же буквой, но доминантный аллель — прописной, а рецессивный — строчной. Аллель пурпурной окраски цветков следует обозначать, например, A, аллель белой окраски цветков — a, аллель желтой окраски семян — B, а аллель зеленой окраски семян — b и так далее.

    Вспомним, что каждая клетка тела имеет диплоидный набор хромосом. Все хромосомы парные, аллельные же гены находятся в гомологичных хромосомах. Следовательно, в зиготе всегда налицо два аллеля и генотипическую формулу по любому признаку необходимо записывать двумя буквами.

    Особь, гомозиготную по доминантному аллелю, следует записать как AA, рецессивному — aa, гетерозиготную — Aa. Опыты показали, что рецессивный аллель проявляет себя только в гомозиготном состоянии, а доминантный — как в гомозиготном (AA), так и в гетерозиготном состоянии (Aa).

    Опыты по скрещиванию предложено записывать в виде схем. Условились родителей обозначать буквой P, особей первого поколения — F1, особей второго поколения — F2 и т. д. Скрещивание обозначают знаком умножения (X), генотипическую формулу материнской особи (♀) записывают первой, а отцовской (♂) — второй. В первой строке записывают генотипические формулы родителей, во второй — типы их гамет, в третьей — генотипы первого поколения и так далее.

    Так как у первого родителя только один тип гамет (A) и у второго родителя также один тип гамет (a), возможно лишь одно сочетание — Aa. Все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

    Следовательно, первый закон Менделя, или закон единообразия первого поколения, в общем виде можно сформулировать так: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

    Закономерности наследования, установленные Г. Менделем и Т. Морганом

    При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыление или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, т. е. возникает расщепление, которое происходит в определенных частотных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывалась окраска семян, из 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а из 7324 семян, в отношении которых учитывался другой признак, было получено 5474 гладких и 1850 морщинистых.

    Основные закономерности наследования признаков — это принципы, в соответствии с которыми определенные характеристики передаются от родительских организмов к потомству. Их открытие и четкая формулировка явля.тся заслугой Грегора Менделя, который проводил по данному вопросу многочисленные опыты.

    Главное достижение ученого — это доказательство дискретного характера наследственных факторов. Иными словами, за каждый признак отвечает конкретный ген. Первые карты были построены для кукурузы и дрозофилы. Последняя является классическим объектом для проведения генетических опытов.

    Заслуги Менделя трудно переоценить, о чем говорят и отечественные ученые. Так, знаменитый генетик Тимофеев-Ресовский отметил, что Мендель был первым, кто провел фундаментальные опыты и дал точную характеристику явлениям, которые ранее существовали на уровне гипотез. Таким образом, его можно считать пионером математического мышления в области биологии и генетики.

    Стоит отметить, что закономерности наследования признаков по Менделю были сформулированы не на пустом месте. Его исследования основывались на изысканиях предшественников. Стоит особенно отметить следующих ученых:

    • Дж. Госс проводил эксперименты на горохе, скрещивая растения с плодами разного цвета. Именно благодаря этим исследованиям были открыты законы единообразия первого поколения гибридов, а также неполного доминирования. Мендель лишь конкретизировал и подтвердил данную гипотезу.
    • Огюстен Саржэ — это растениевод, выбравший для своих опытов тыквенные культуры. Он первым стал изучать наследственные признаки не в совокупности, а по отдельности. Ему принадлежит утверждение, что при передаче тех или иных характеристик они не смешиваются между собой. Таким образом, наследственность является константной.
    • Ноден проводил исследования на различных видах такого растения, как дурман. Проанализировав полученные результаты, он счел нужным говорить о наличии доминирующих признаков, которые в большинстве случаев будут преобладать.

    Таким образом, уже к XIX веку были известны такие явления, как доминантность, единообразие первого поколения, а также комбинаторика признаков у последующих гибридов. Тем не менее всеобщих закономерностей выработано не было. Именно анализ имеющейся информации и выработка достоверной методики исследования являются главной заслугой Менделя.

    Рассматривая закономерности наследования признаков, стоит уделить особое внимание единообразию гибридов первого поколения. Он был открыт путем опыта, в ходе которого производилось скрещивание родительских форм с одним контрастным признаком (форма, окраска и т. д.).

    Менделем было принято решение провести эксперимент на двух разновидностях гороха — с красными и белыми цветками. Как результат, гибриды первого поколения получили пурпурные соцветия. Таким образом, появилось основание говорить о наличии доминантных и рецессивных признаков.

    Стоит отметить, что данный опыт Менделя был не единственным. Он использовал для экспериментов растения с другими оттенками соцветий, с разной формой плодов, разной высотой стебля и прочие варианты. Опытным путем ему удалось доказать, что все гибриды первого порядка единообразны и характеризуются доминантным признаком.

    Много вопросов вызывают закономерности наследования признаков. Опыты Менделя коснулись также особей, которые отличаются друг от друга сразу по нескольким признакам. По каждому в отдельности предыдущие закономерности соблюдались. Но вот, рассматривая совокупность признаков, не удалось выявить какой-либо закономерности между их комбинациями. Таким образом, есть основания говорить о независимости наследования.


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *