Законы менделя закономерности наследования при моногибридном скрещивании

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Законы менделя закономерности наследования при моногибридном скрещивании». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

После того как гибриды первого поколения самоопылились и образовали плоды, Мендель собрал их семена и посадил. Затем он произвёл перекрёстное опыление выросших растений и обнаружил, что большинство распустившихся цветков имели пурпурный цвет, но у меньшей части проявился рецессивный признак – белый цвет венчиков. Скрытый в первом поколении, он снова показал себя во второй волне потомков.

Полагая, что пропорции числа потомков F2 помогут понять механизмы наследственности, Мендель подсчитал количество особей с каждым проявленным признаком. Из 929 наблюдаемых растений 705 (75,9%) имели пурпурные цветы, а 224 (24,1%) – белые. Таким образом, примерно ¼ часть исследуемых особей демонстрировала рецессивную форму признака.

Те же результаты Мендель наблюдал при исследовании всех остальных 6 признаков гороха: из растений F2 ¾ части достались доминантные признаки, ¼ части – рецессивные. Другими словами, доминантно-рецессивное соотношение всегда было близко к соотношению 3:1.

Закономерности наследования. Моногибридное скрещивание

Мендель продолжал наблюдать, как растения F2 передают черты последующим поколениям при самоопылении. Он обнаружил, что горох с белыми цветами производит только растения с белыми венчиками. Напротив, 1/3 часть растений с доминантным признаком – пурпурными цветами в поколении F3 снова демонстрировала расщепление в соотношении 3:1, где ¼ часть снова украсилась белыми цветами.

Этот результат показал, что расщепление признаков, полученное в поколении F2, было «неистинным». Настоящие показатели соответствуют соотношению 1:2:1, ¼ — «истинно доминантных», ½ часть «не истинно доминантных» особей и ¼ «истинных рецессивных» особей.

Современные генетики объяснили бы это явление соотношением аллелей гена. При самоопылении гетерозиготных растений (Аа) образуются гаметы с аллелями «А» и «а», они то и дают расщепление по фенотипу признаков в соотношении 3:1, как при скрещивании гибридов F1. Тогда как гомозиготные растения с генотипами АА и аа дают только один тип гамет и проявляют один признак.

Из своих экспериментов Мендель смог понять о природе наследственности четыре закономерности.

  • Растения, которые он скрещивал, не давали в потомстве промежуточных признаков, иначе наследование было бы предсказуемым. Напротив, каждый родительский признак передавался отдельно (дискретно).
  • Из каждой пары альтернативных признаков один не был выражен у гибридов поколения F1, хотя он вновь появлялся у особей поколения F2. Черта, которая исчезала в первом поколении, была просто временно скрытой (подавленной).
  • Изученные пары альтернативных признаков были разделены среди потомства растений, взятых для скрещивания. Одни особи проявляли одну черту, вторые – другую.
  • Эти альтернативные черты были выражены в поколении F2 в соотношении ¾ доминантные, ¼ рецессивные. Эта характеристика (3:1) называется менделевским соотношением моногибридного скрещивания.

Результаты, полученные Менделем, объясняются с помощью простой модели, которая выдержала испытание временем. Используя более современный язык, их можно резюмировать следующим образом.

  1. Родители не передают физические черты непосредственно их потомству. Скорее они передают дискретную информацию для этих черт, которую Мендель назвал «факторами». Мы сегодня называем эти факторы генами.
  2. Каждый индивид получает по одной копии гена от каждого родителя. Теперь мы знаем, что гены хранятся в хромосомах и любой многоклеточный организм диплоиден с набором хромосом от каждого родителя.
  3. Не все копии гена идентичны. Альтернативные копии называются аллелями. Если при слиянии двух гаплоидных гамет зигота получает одинаковые аллели одного гена, организм считается гомозиготным (АА, или аа). Если гаметы содержат разные аллели, то потомство будет гетерозиготным (Аа).
  4. Эти два аллеля остаются самостоятельными, они не смешиваются, не изменяют друг друга. И когда индивид взрослеет и производит свои собственные гаметы, аллели разделяются в них случайным образом.
  5. Наличие определённого аллеля не гарантирует, что признак, который он кодирует, будет выражен. В гетерозиготном состоянии у особи выражен только один аллель (доминантный), другой аллель присутствует, но не выражается (рецессивный).

Генетики называют общий набор аллелей, который содержит индивид, генотипом. А внешний вид или другие наблюдаемые характеристики, к которым привело выражение этих аллельных признаков – фенотипом. Другими словами, генотип – это проект, чертёж, а фенотип – это видимый результат, воплощение проекта на практике.

Всё это позволяет нам представить соотношение Менделя в более современных терминах. Соотношение 3:1 – это разделение по фенотипу при моногибридном скрещивании (3 пурпурных, 1 белый). Соотношение 1:2:1 – это разделение потомства по генотипу, по наборам пар аллельных генов.

Исследования показали, что некоторые признаки человека передаются по наследству в соответствии с законами Менделя – как доминантные или рецессивные (таб. 1). Учёные не могут искусственно скрещивать людей ради того, чтобы проследить эту закономерность, как это делал Мендель на горохе. Поэтому они изучают родословные людей.

Таблица 1. Некоторые доминантные и рецессивные признаки человека
Рецессивный признак Фенотип Доминантный признак Фенотип
Альбинизм Отсутствие меланиновой пигментации Волосы на пальцах Наличие волос на среднем сегменте пальцев
Алкаптонурия Неспособность метаболизировать гомогентизиновую кислоту Брахидактилия Короткие пальцы
Красно-зелёный дальтонизм Неспособность различать красный и зелёный световые волны Болезнь Гентингтона Дегенерация нервной системы начиная со среднего возраста
Кистозный фиброз Аномальная секреция желёз, ведущая к дегенерации печени и лёгочной недостаточности Вкусовая чувствительность к фенилтиокарбомиду (ФТК) Ощущение горького вкуса при попадании на рецепторы ФТК
Мышечная дистрофия Дюшенна (миопатия Дюшенна) Истощение мышц в детском возрасте Камптодактилия Невозможность выпрямлять мизинец
Гемофилия Неспособность крови свёртываться должным образом, сгустки образуются очень медленно Гиперхолестеринемия Повышенный уровень холестерина в крови и риск сердечных приступов
Серповиднокле

точная анемия

Дефект гемоглобина, вынуждающий красные кровяные клетки (эритроциты) изгибаться в форме серпа Полидактилия Больше, чем в норме количество пальцев на руках или ногах

Родословная – это графическое представление скрещивания и потомства в течение нескольких поколений для того, чтобы проследить тип наследования какого-либо признака. При анализе родословных важно помнить, что вызывающие болезнь аллели довольно редки в популяциях людей.

Альбинизм – это состояние, при котором не синтезируется пигмент меланин, он наследуется по рецессивному принципу. Долгое время считалось, что это связано с одним геном, но теперь известно несколько генов, приводящих к альбинизму. Их общей чертой является отсутствие пигмента волос, кожи и радужной оболочки глаз. Потеря пигмента делает кожу человека чувствительной к солнечным лучам.

В основе любой схемы моногибридного скрещивания лежит генетика — наука, изучающая все ключевые закономерности наследственности и изменчивости организмов вследствие селекции. И главный вопрос, который изучается при исследовании моногибридного скрещивания, — моногенное наследование. Под ним подразумевается наследование, проявление которого обусловлено одним конкретным геном с его различными формами-аллелями.

Их краткая характеристика такова:

Первым ученым, которому удалось выявить и доказать существование определенных закономерностей наследования признаков при моногибридном скрещивании, стал австрийский монах-августинец Грегор Иоганн Мендель, изучавший биологию и ботанику. Произошло это важное для науки открытие в XIX веке в результате проведения опыта, в процессе которого ученый провел скрещивание гороха, имеющего пару отличительных признаков.

Закономерности наследования при моногибридном скрещивании

Выведя первую закономерность, ученый решил не останавливаться на достигнутом, решив вырастить полученное в результате селекции гибридное семя и задействовать его в проведении дальнейших опытов. Каково же было его удивление, когда при последующем скрещивании выращенных гибридов с чистопородными видами, стало возникать расщепление между поколениями второго порядка, причем по строго определенной схеме.

Изучив первый и второй закон моногибридного скрещивания Менделя, стоит закрепить полученные знания на практике. И существует множество простых задач по моногибридному скрещиванию с решением, ознакомление с которыми поможет не только не совершать распространенных ошибок, но и научиться неплохо разбираться в рассматриваемом вопросе в целом.

Одна из популярных тем — цвет глаз, который может унаследовать ребенок от своих родителей. К примеру, в семье Никитиных дочь родилась с карими глазами, а сын с голубыми, тогда как их мать голубоглазая, а ее родители кареглазые. Вопрос заключается в том, по какому принципу идет унаследование этого признака и каким генотипом обладают члены семьи.

Знание основных понятий моногибридного скрещивания зачастую применяется на практике и в народном хозяйстве, позволяя фермерам выводить определенную породу птицы, скота и другой живности. Хорошим тому примером может стать задача о петухе и двух курицах с гребнем розовидного типа, при скрещивании которых удалось вывести 14 цыплят с аналогичным признаком от одной несушки и 9 от другой, притом что 7 из них унаследовали родительский ген, а оставшиеся 2 — нет, получив листовидную пластинку на головке.

Вопрос к заданию, как и в предыдущем случае, заключается в определении генотипов всех трех участников скрещивания с учетом того фактора, что сам признак относится к аутосомным моногенным генам. Уже из одного только условия становится очевидно, что первая курица была гомозиготной, дав чистопородный выводок. Однако этого нельзя сказать о второй несушке, которая дала небольшой процент цыплят с отличающимся признаком, являясь гетерозиготной.

А так как количество цыплят с другим геном оказалось гораздо меньшим по сравнению с основным, становится очевидно, что он является рецессивным, уступая доминанте, коей и является аллель розовидного гребня.

  • Геометрия
  • Информатика
  • Математика
  • Алгебра
  • Алгебра и начала математического анализа

Моногибридное скрещивание: полное доминирование Урок 2.

  • Изобразительное искусство
  • Музыка
  • Испанский язык
  • Английский язык
  • Немецкий язык
  • Французский язык
  • Основы безопасности жизнедеятельности
  • Физическая культура
  • Русский язык
  • Литература
  • Литературное чтение
  • История
  • География
  • Обществознание
  • Экология
  • Россия в мире
  • Право
  • Окружающий мир
  • Экономика

Моногибридное скрещивание — основные понятия, закономерности, задачи

  • Технология (мальчики)
  • Технология
  • Технология (девочки)

Грегор Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, так как о гене тогда еще не существовало понятия.

Закономерности наследственности

Формулировка закона

Схема скрещивания

Первый закон Менделя. Правило единообразия первого поколения или закон доминирования.

Грегор Мендель, 1865г.

Генетика – наука о наследственности и изменчивости. Наследственность – это свойство дочерних организмов быть похожими на своих родителей морфологическими, физиологическими, биохимическими и другими признаками и особенностями индивидуального развития. Изменчивость – это свойство, противоположное наследственности, оно заключается в способности дочерних организмов отличаться от родителей морфологическими, физиологическими, биохимическими и другими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования. Элементарной единицей наследственности и изменчивости является ген. Ген – это участок молекулы ДНК, определяющий последовательность аминокислот определенного полипептида или нуклеотидов РНК.

Основными задачами генетики как науки являются:

  • изучение способов хранения генетической информации у разных организмов и ее материальных носителей;
  • анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому;
  • выявление механизмов и закономерностей реализации генетической информации в процессе индивидуального развития и влияние на них условий среды;
  • изучение закономерностей и механизмов изменчивости;
  • поиск способов исправления поврежденной информации.

Для решения этих задач используются разные методы исследования

Метод гибридологического анализа был разработан Г. Менделем. Сущность его заключается в следующем:

  • проводится анализ наследования отдельных альтернативных признаков;
  • прослеживается передача этих признаков в ряду поколений;
  • проводится точный количественный учет потомков с различной комбинацией признаков.

Этот метод позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

Цитогенетический метод основан на изучении кариотипов (наборов хромосом) клеток организма и позволяет выявлять геномные и хромосомные мутации.

Генеалогический метод позволяет изучать родословные животных и человека и устанавливать закономерности и тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.

Близнецовый метод основан на изучении проявления признаков у монозиготных и дизиготных близнецов. Он позволяет выявить роль наследственности и среды в формировании конкретных признаков.

Биохимические методы исследования основаны на изучении химического состава клеток и активности ферментов, которые определяются наследственностью. Этими методами выявляют генные мутации.

Популяционно-статистический метод позволяет рассчитывать частоту генов и генотипов в популяциях.

Совокупность всех генов организма называется генотипом. Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа под действием факторов окружающей среды. Отдельный признак называется феном.

Гены, определяющие развитие альтернативных (взаимоисключающих) признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом.

Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) – рецессивным. Доминантный ген подавляет действие рецессивного, проявляется фенотипически в гомо- и в гетерозиготном состоянии, а рецессивный – только в гомозиготном. Аллельные гены принято обозначать одинаковыми буквами латинского алфавита: доминантный – заглавной буквой (А), а рецессивный – прописной (а).

Если в гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных – АА или два рецессивных – аа), такой организм называется гомозиготным, так как он образует один тип гамет и не дает расщепления при скрещивании с таким же по генотипу. Если в гомологичных хромосомах локализованы разные гены одной аллельной пары (Аа), то такой организм называется гетерозиготным. Он образует два типа гамет и при скрещивании с таким же по генотипу дает расщепление.

Г. Мендель проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным. Если у родительских форм учитывают две пары альтернативных признаков, скрещивание называется дигибридным.

Прежде чем проводить опыты, Г. Мендель получил чистые линии растений гороха с альтернативными признаками: гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом.

Запись скрещивания проводится следующим образом: в первой строке пишут букву Р (родители), далее генотип женского организма, знак скрещивания Х и генотип мужского организма; во второй строке записывают букву G (гаметы) и гаметы женской и мужской особей, каждая буква берется в кружочек; в третьей строке ставят букву F (потомки) и записывают генотипы потомков.

Моно- и дигибридное скрещивание. Законы Менделя

Взаимодействие генов одной аллельной пары (внутриаллельное взаимодействие) может проявляться полным и неполным доминированием. Если доминантный ген полностью подавляет действие рецессивного (как в опытах Менделя), то гомо- и гетерозиготы с доминантным геном неразличимы фенотипически. В этом случае говорят о полном доминировании. Однако доминантный ген не всегда полностью подавляет проявление рецессивного гена – в этом случае происходит неполное доминирование. При этом гибриды первого поколения не воспроизводят признаки родителей – имеет место промежуточный характер наследования. Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу будет одинаковым (1 : 2 : 1).

Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование). Во втором поколении расщепление по фенотипу и по генотипу будет: 1 часть растений с красными цветками (доминантные гомозиготы), две – с розовыми (гетерозиготы) и одна – с белыми (рецессивные гомозиготы).

Иногда в популяции встречается аллельных генов больше, чем два. Такое явление называется множественными аллелями. Например, группы крови человека по АВ0 — системе определяются тремя аллелями: I0, IA, IB. У людей I(0) группы крови в эритроцитах не определяются специфические антигены А и В, их генотип – I0I0 (ген I0> не кодирует синтез специфических белков). У людей II(А) группы крови в эритроцитах содержится антиген А (его синтез детерминируется геном IА)‚ их возможные генотипы – IАIА или IАI0. Люди III(В) группы крови содержат в эритроцитах антиген В (его синтез детерминируется геном IB), их возможные генотипы – IBIB и IBI0. У людей IV группы крови в эритроцитах содержатся и антиген А и антиген В, их генотип – IAIB. В этом случае аллельные гены не подавляют проявление друг друга, они равноценны. Такое взаимодейстие называется кодоминарованием. Следовательно, IV группа крови у человека определяется одновременным присутствием в генотипе двух кодоминантных генов IA и IB ;при этом ген IA детерминирует синтез в эритроцитах антигена А, а ген IB – антигена В. В целом, гены IA и IВ кодоминантны, но доминантны по отношению к гену I0 (IА = IB > I0).

Для объяснения установленных Менделем закономерностей наследования У. Бэтсоном была предложена гипотеза чистоты гамет. Кратко ее можно свести к следующим положениям:

  1. у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии;
  2. в процессе мейоза в гамету попадает только один ген из аллельной пары.

Гипотеза чистоты гамет объясняет, что законы расщепления есть следствие случайного сочетания гамет, несущих разные гены. Однако общий результат оказывается закономерным, так как здесь проявляется статистический характер наследования, определяемый большим числом равновероятных встреч гамет. Таким образом, расщепление при моногибридном скрещивании гетерозиготных организмов 3 : 1 в случае полного доминирования или 1 : 2 : 1 при неполном доминировании следует рассматривать как биологическую закономерность, основанную на статистических данных.

Скрещивание, в котором родительские особи анализируются по одной паре альтернативных признаков, называется моногибридным, по двум – дигибридным, по трем и больше – полигибридным.

Знак скрещивания – х, родительские формы обозначают латинской буквой Р (от лат. parentes – родители), гаметы – G, потомков – F (от лат. phylii – сыны), номер поколения потомков – индекс снизу – F1 , F2, F3 …, материнскую особь – знаком ♀, мужскую – ♂. Генотип материнской особи записывают, как правило, первым, отцовской – вторым.

Г. Мендель для исследований выбирал два сорта гороха, которые четко отличались по какому-нибудь признаку: желтая или зеленая окраска семян, гладкая или морщинистая поверхность семени, расположение цветков вдоль всего стебля или на его концах и т. д. Выращивал такие растения ряд поколений, пока не убеждался, что они размножаются в чистоте – чистые линии. Мендель использовал метод гибридизации. Он скрещивал такие растения между собой и получал поколение, имеющее лишь один из этих признаков. Второй не развивался. То есть ученый получил единообразие в первом поколении растений. Признак, сохраняющийся и подавляющий другой, называют доминантным, подавляемый – рецессивным.

Явление единообразия гибридов первого поколения и проявление в нем только одного из альтернативных признаков – доминантного, имеет название закона доминирования или первого закона Менделя.

Формулировка: при скрещивании гомозиготных особей, которые отличаются по одной паре альтернативных признаков, все гибриды первого поколения единообразны по фенотипу и генотипу.

При самоопылении гибридов первого поколения во втором гибридном поколении Мендель наблюдал растения с признаками родителей (доминантным и рецессивным). Соотношение их составляло: 3 – растения с доминантным признаком, 1 – с рецессивным. Например, во втором поколении из 926 растений 705 имели красные цветки, а 224 – белые (соотношение 3,15:1), из 8023 семян гороха 6022 были желтые, а 2001 – зеленые (3,01:1) и т. д.

Явление расщепления признаков при скрещивании гибридов первого поколения имеет название закона расщепления или второго закона Менделя.

Формулировка: при скрещивании двух гетерозиготных особей (гибридов первого поколения) у потомков наблюдается расщепление 3:1 по фенотипу и 1:2:1 по генотипу.

Соотношение особей с доминантным и рецессивным признаками тем точнее приближается к 3:1, чем больше численность изучаемого потомства, Менделевские законы доминирования и расщепления являются универсальными. Им подчиняются все живые организмы, независимо от простоты или сложности их организации.

Простейшим из разновидностей полигибридного скрещивания является дигибридное.

Г. Мендель скрестил растения гороха посевного с желтым гладким семенем (доминантные признаки) и зеленым морщинистым (рецессивные признаки). Растения разводились в «чистоте», то есть являлись гомозиготами по обоим признакам.

В первом поколении он получил растения, которые имели желтые гладкие семена – единообразие первого поколения по доминантным признакам.

При скрещивании гибридов первого поколения (самоопылении) наблюдалось расщепление: 315 семян желтых гладких, 108 зеленых гладких, 101 желтое морщинистое, 32 зеленых морщинистых.

Во втором поколении образовалось четыре фенотипа в соотношении 9:3:3:1. Произошло независимое расщепление признаков: соотношение желтых и зеленых семян 3:1 соответственно, гладких и морщинистых – 3:1. Эта закономерность получила название независимого комбинирования признаков или третьего закона Менделя.

В природе одни гены доминируют над другими. Это значит, что если с гаметами в зиготу попадают гены, отвечающие за разные признаки (например, разный цвет лепестков), то будет проявляться один из них, доминантный.

Ген непроявленного альтернативного признака называется рецессивным и проявляется внешне только в комбинации аа.

При записи это различие показывается величиной буквы:

А означает, что признак доминантный. Ген зелёного цвета семян гороха доминирует над жёлтым.

а – признак рецессивный.

Если особь несёт и доминантные, и рецессивные признаки, то она называется гетерозиготной: Аа.

При наличии у особи либо только доминантных (АА), либо только рецессивных (аа) признаков, она называется гомозиготной.

В первом поколении в опытах Менделя все особи были одинаковы как по фенотипу, так и по генотипу. Эта закономерность названа первым законом Менделя, или законом единообразия первого поколения.

Второе поколение при моногибридном скрещивании получается иным:

Р: Аа х Аа

G: А А х а а

F2: АА Аа Аа аа

Как видим, по генотипу происходит расщепление на три разных комбинации генов: АА, Аа, аа.

В фенотипе также происходит расщепление и подавленный в первом поколении признак проявляется в 25 % случаев. Остальные 75 % организмов будут носить доминантный признак А.

При моногибридном скрещивании учитывается только один признак организмов, например, цвет лепестков. 1 и 2 законы Менделя описывают, как наследуются признаки при таком скрещивании в случае с чистыми линиями. В первом поколении все особи гетерозиготны и внешне одинаковы. Во втором поколении наблюдается расщепление по фенотипу в пропорции 3:1. Расщепление по генотипу при моногибридном скрещивании происходит в пропорции 1:2:1.

Законы Менделя

Второе поколение при моногибридном скрещивании получается иным:

Р: Аа х Аа

G: А А х а а

F2: АА Аа Аа аа

Как видим, по генотипу происходит расщепление на три разных комбинации генов: АА, Аа, аа.

В фенотипе также происходит расщепление и подавленный в первом поколении признак проявляется в 25 % случаев. Остальные 75 % организмов будут носить доминантный признак А.

При моногибридном скрещивании учитывается только один признак организмов, например, цвет лепестков. 1 и 2 законы Менделя описывают, как наследуются признаки при таком скрещивании в случае с чистыми линиями. В первом поколении все особи гетерозиготны и внешне одинаковы. Во втором поколении наблюдается расщепление по фенотипу в пропорции 3:1. Расщепление по генотипу при моногибридном скрещивании происходит в пропорции 1:2:1.

Данный сайт я создавал не для заработка. Я на нем не размещаю никакой рекламы и делаю это не из-за этических соображений, а просто потому что биология пока тема не особо доходная. К тому же у меня есть другие проекты на которых я хорошо зарабатываю.

Наверное у вас возник вопрос, а зачем вообще мне все это нужно?

Я еще не так давно учился на биофаке и конечно же возлагал надежды на то, что после окончания буду работать по специальности и заниматься научно исследовательской работой. Однако в аспирантуру не поступил и работу биологом по специальности, которая нормально оплачивается не нашел. После провала вступительных экзаменов в аспирантуру я пошел получать второе высшее образование и теперь занимаюсь программированием.

На данный момент биология это моё хобби. Данный сайт можно назвать сайтом для своих. Если у вас есть идеи о том, как сделать данный проект более серьезным и более полезным вы можете написать мне.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *