Мушка дрозофила закон сцепленного наследования

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Мушка дрозофила закон сцепленного наследования». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

ВАЖНО!

Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках её тела находится только 4 пары хромосом и имеет место высокая скорость размножения (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана). Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

  • Геометрия
  • Информатика
  • Математика
  • Алгебра
  • Алгебра и начала математического анализа
  • Изобразительное искусство
  • Музыка
  • Испанский язык
  • Английский язык
  • Немецкий язык
  • Французский язык
  • Русский язык
  • Литература
  • Литературное чтение
  • История
  • География
  • Обществознание
  • Экология
  • Россия в мире
  • Право
  • Окружающий мир
  • Экономика

Подробное экспериментальное доказательство и объяснение хромосомная теория наследственности получила от Томаса Ханта Морган и его сотрудников. Они доказали, что гены расположены в хромосомах линейно и наследуются сцепленно и что это сцепление может нарушать кроссинговер.

В 1910 г, изучая плодовую мушку дрозофилу обыкновенную, или дрозофилу фруктовую (Drosophila melanogaster), Морган обнаружил мутировавшего самца мухи с белыми глазами вместо красных. Он немедленно приступил к её изучению, желая узнать, будет ли эта черта наследоваться менделеевским способом.

Следуя экспериментальной процедуре, установленной Менделем, Морган скрестил особей из поколения F1 между собой. Из 4252 особей поколения F2 782 (18%) имели белые глаза. Хотя соотношение красно- и белоглазых дрозофил было больше чем 3:1, оно послужило доказательством того, что цвет глаз наследуется независимо. Однако нечто в исходе скрещивания было странным и непредсказуемым – все белоглазые мухи поколения F2 были самцами.

  • Гены находятся в хромосомах.
  • Хромосомы содержат неодинаковое число разных генов, набор генов негомологичных хромосом уникален.
  • Гены в хромосоме расположены в линейной последовательности.
  • Аллели одного гена занимают одинаковые локусы в гомологичных хромосомах.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола). У человека — 23 группы сцепления у женщин и 24 у мужчин.
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определённым набором хромосом — кариотипом.
  • За единицу расстояния между сцепленными генами принята 1 морганида – расстояние, на котором кроссинговер происходит с вероятностью 1%.

Хромосомная теория наследственности объясняет передачу генов не только сцепленных с половыми хромосомами. У душистого горошка ген окраски цветка (фиолетовый против красного) и ген формы пыльцевого зерна (круглые или удлинённые) переносятся в одной хромосоме. Поэтому аллели этих генов наследуются вместе.

Гетерозиготные растения душистого горошка имеют фиолетовые цветки и удлинённые пылинки. Аллели, отвечающие за фиолетовую окраску и удлинённую форму пыльцы лежат в одной гомологичной хромосоме, а отвечающие за красный цвет и круглую форму – в другой. Значит, две гаметы этого растения будут содержать либо аллели с фиолетовым цветом и овальной формой, либо с красной окраской и круглой формой пыльцевого зерна.

Такой тип наследования не соответствует независимому наследованию, поскольку окраска цветка и форма не отделяются во время мейоза.

Чтобы увидеть, как связь между генами влияет на наследование двух разных признаков, давайте рассмотрим еще один из экспериментов Моргана с дрозофилами. В этом случае будем следить за наследованием окраски тела и размеров крыльев мух.

Дикие плодовые мушки имеют серые тела и крылья нормального размера. Вдобавок к этим мухам Морган успел обзавестись мутантными особями с черными телами и крыльями намного меньше обычных – рудиментарными. Мутантные аллели являются рецессивными по отношению к аллелям дикого типа. Во время изучения наследования этих двух генов, Морган провел скрещивание, показанное на рисунке ниже.

Сначала он скрестил чистые линии этих мух с серым телом и нормальными крыльями (ААВВ) и с чёрным телом и зачаточными крыльями (аавв). Все гибриды первого поколения в соответствии с законом единообразия были серыми с нормальными крыльями (АаВв).

Мейоз и случайное оплодотворение порождают генетические вариации среди потомства у организмов, размножающихся половым путем. О независимом наследовании Мендель узнал из скрещиваний, в которых он следил за двумя признаками гороха. Он увидел, что некоторые потомки имеют черты, которые не совпадают ни с одной из родительских. Скрещивая растения с жёлтыми круглыми семенами с растениями с зелёными морщинистыми, он получил также жёлтые морщинистые и зелёные круглые семена (рекомбинантные, или кроссоверные).

Но половина потомства унаследовала фенотип, который соответствует одному из родительских. Когда 50% всего потомства являются рекомбинантами, как в данном примере говорят, что существует частота рекомбинации равная 50%. Частота рекомбинации в 50% также наблюдаются для любых двух генов, расположенных на разных хромосомах.

Теперь давайте вернемся в «летную комнату» Моргана, чтобы посмотреть, как можно проиллюстрировать результаты тесткросса. Напомним, что большинство отпрысков по окраске тела и размерам крыла имел родительские фенотипы.

Это дало возможность предположить, что два гена были в одной хромосоме. Появления родительских типов в количестве больше 50% указывает на то, что гены связаны. Около 17% потомства, однако, были рекомбинантами, значит имел место кроссинговер.

При полном сцеплении в результате анализирующего скрещивания получается только 2 фенотипа в соотношении 1:1.

Физическое поведение хромосом во время мейоза способствует генерации вариаций в потомстве. Каждая пара гомологичных хромосом выстраивается независимо от других пар во время метафаза I, во время профазы I смешиваются и сочетаются части материнского и отцовского гомологов. Это одна из причин наследственной изменчивости организмов – комбинативная.

Причины комбинативной изменчивости:

  • перетасовка аллелей генов во время кроссинговера;
  • независимое расхождение хромосом в процессе мейоза;
  • случайность встречи гамет во время оплодотворения и значит случайный набор хромосом.

Раздел ЕГЭ: 3.5 … Законы Моргана: сцепленное наследование признаков, нарушение сцепления генов…



В каждой хромосоме локализовано множество генов. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил назвать сцепленным. Число групп сцепления соответствует гаплоидному набору хромосом.

Способ наследования сцепленных генов отличается от наследования генов, находящихся в разных хромосомах. При независимом комбинировании дигибрид образует четыре типа гамет в равных количествах, а дигибрид с генами, локализованными в одной паре хромосом, — только два типа гамет, тоже в равных количествах.

Сцепленное наследование. Закон Моргана. Генетика пола

На предыдущих уроках мы с вами изучили основополагающие законы генетики – это три закона Г. Менделя и познакомились с цитологическими основами их действия. Давайте вспомним всё, что мы изучили по данной теме.

Слайд: Вопросы:

  1. Назовите три закона Г. Менделя?
    I закон – закон единообразия, II закон – закон расщепления, III закон – закон независимого наследования.
  2. Каких правил придерживался Г. Мендель при проведении своих опытов?
    1. использовал для скрещивания растения разных самоопыляющихся сортов – чистыми линиями
    2. чтобы получить больше материала для анализа, использовал несколько родительских пар гороха
    3. намеренно упростил задачу, наблюдая наследование только одного признака; остальные не учитывал
  3. Сформулируйте закон чистоты гамет. Кому принадлежит открытие этого закона?
    При образовании гамет в каждую из них попадает только один из двух аллельных генов.
  4. Всегда ли признаки можно чётко разделить на доминантные и рецессивные?
    В некоторых случаях доминантный ген не до конца подавляет рецессивный ген из аллельной пары. При этом возникают промежуточные признаки.
  5. Какое название получило это явление?
    Это явление получило название неполного доминирования.
  6. Всегда ли по фенотипу можно определить, какие гены содержит данная особь? Приведите пример.
    Не всегда. Рецессивный признак всегда проявляется только в гомозиготном состоянии, т.е. аа. А доминантный признак может проявляться у особей с гомозиготным или гетерозиготным генотипом, т.е. АА или Аа.
  7. Можно ли установить генотип особей, которые не различаются по фенотипу? Какой метод используют для этого?
    Да, можно установить. Для этого используют скрещивание исследуемой особи с рецессивной гомозиготой аа по исследуемому признаку, называемое анализирующим скрещиванием.
  8. Какими особенностями характеризуется дигибридное скрещивание?
    Рассматривается наследование и производится точный количественный учёт потомства по двум парам альтернативных признаков.
  9. Всегда ли справедлив закон независимого наследования, т.е. III закон Г. Менделя?
    Закон справедлив только в тех случаях, когда гены рассматриваемых признаков располагаются в разных негомологичных хромосомах.

Приветствие класса

Итак, законы Г. Менделя имеют свои ограничения. После их открытия в науке постепенно стали накапливаться факты о том, что в некоторых случаях расщепление признаков происходит не по правилам Г. Менделя. При анализе этого явления оказалось, что гены исследуемых признаков были в одной хромосоме и наследовались вместе. Сегодня мы будем говорить об особенностях такого наследования, выясним существуют ли случаи его нарушения. Так же мы разберём особенности определения пола различных живых организмов и механизм наследования признаков, сцепленных с полом.

Тема сегодняшнего занятия: «Сцепленное наследование. Генетика пола.»

Слайд: «Сцепленное наследование. Генетика пола.»

Генов, кодирующих различные признаки у любого организма очень много. Например, у человека приблизительно около 100 000 генов, а видов хромосом только 23. Следовательно, все они умещаются в этих хромосомах. Как же наследуются гены, находящиеся в одной хромосоме?

На этот вопрос даёт ответ Современная хромосомная теория наследственности созданная Т. Морганом.

Слайд: Томас Хант Морган

Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка Дрозофила. Проводилось дигибридное анализирующее скрещивание по двум признакам: длине крыльев и цвету тела. Данные опытов показали, что получается расщепление признаков 1:1 вместо ожидаемого — 1:1:1:1.

Слайд: Эксперимент Т. Моргана

Слайд: Закон Т. Моргана

В ходе этих исследований было также доказано, что каждый ген имеет в хромосоме своё строго определённое место — локус. В последствии эта особенность расположения генов будет практически использована для составления генетических карт.

Однако в экспериментах Моргана выяснилось, что среди гибридов первого поколения при проводимых скрещиваниях, появлялся небольшой процент мушек с перекомбинацией признаков, находящихся в одной хромосоме, т.е. нарушение сцепленного наследования.

Слайд: Нарушение сцепленного наследования

Оказалось, что во время профазы первого деления мейоза гомологичные хромосомы могут разрываться в месте контакта и обмениваться аллельными генами. Это явление получило название – перекреста или кроссинговера.

Слайд: Кроссинговер

Большинство живых организмов представлено особями двух видов – мужского и женского. Как же генетически определяется принадлежность организма к тому или иному полу?

Слайд: Классификация хромосом организма

В начале ХХ века Т. Морган установил, что самцы и самки отличаются друг от друга всего одной парой хромосом – половых хромосомы. Хромосомы в этой паре отличны друг от друга. Остальные пары хромосом одинаковы и получили название – аутосом. При формировании гамет у самки будет образовываться один вид гамет: 3 аутосомы + Х хромосома, а у самцов два вида гамет: 3 аутосомы + Х хромосома или 3 аутосомы + У хромосома. Если при оплодотворении с яйцеклеткой сольётся сперматозоид с Х-хромосомой, то разовьётся самка, если с У-хромосомой, то – самец.

Слайд: От какого пола – гомозиготного или гетерозиготного зависит пол будущей особи?

– От гетерозиготного, т.е. содержащего половые хромосомы разного вида

Этот факт доказывает следующая схема.

Слайд: Схема расщепления по признаку пола у дрозофилы

У некоторых видов живых организмов хромосомное определение пола совсем другое. Рассмотрим такие случаи.

Слайд: Хромосомное определение пола

Слайд: Все ли гены, находящиеся в половых хромосомах определяют признаки, имеющие отношение к полу?

Если гены, определяющие какой либо признак расположены в аутосомах, то наследование признака происходи независимо от того, кто его носитель – мужчина или женщина. Если гены признака расположены в половых хромосомах, то его наследование будет определяться его расположением в Х или У хромосоме, а значит и принадлежностью к определённому полу.

Слайд: Наследование сцепленное с полом

Примером такого наследования служит наследование таких заболеваний у человека как гемофилия и дальтонизм. Гены, определяющие здоровый и больной признак расположены в Х-хромосоме половой пары. В этом случае болезнь проявляется у мужчин, даже несмотря на то, что больной ген в рецессивной форме.

Сообщения учащихся о гемофилии и дальтонизме

Слайд: Гемофилия

Информация: Гемофилия — наследственная болезнь, передаваемая по рецессивному сцепленному с Х-хромосомой, типу, проявляющаяся повышенной кровоточивостью.
Передается по наследству через потомство сестер и дочерей больного. Женщины-носительницы передают гемофилию не только своим детям, а через дочерей-носительниц — внукам и правнукам, иногда и более позднему потомству. Болеют мальчики (гемофилия С встречается и у девочек).

Выделяют три формы гемофилии — А, В и С. При гемофилии А отсутствует фактор VIII, при гемофилии В — фактор IX и при гемофилии С — фактор XI свертывания крови.

Слайд: Дальтонизм

А теперь, давайте посмотрим, на сколько вы поняли то, о чём шла речь на уроке, и выполним приготовленные задания.

Диск: тестовые вопросы по изученной теме. («Виртуальная школа «Кирилла и Мефодия», репетитор по биологии», «Виртуальная школа «Кирилла и Мефодия», репетитор по биологии») вопросы №238, 226, 217, 222, 254, 256.

  1. Законы Г. Менделя имеют ограничения
  2. Гены, находящиеся в одной хромосоме наследуются совместно, т.е. сцеплено
  3. Явление нарушения сцепленного наследования называется кроссинговером
  4. Принадлежность к полу определяется парой половых хромосом
  5. Гены, находящиеся в половой паре хромосом наследуются сцеплено с полом

Слайд: Выучить §3.8,3.10; Уметь отвечать на вопросы после параграфов.

Выполнить письменно задание на карточках.

Подготовить сообщения о видах взаимодействия генов.

Опорный конспект, письменное задание.

Закон Томаса Моргана: кратко и понятно

Открытие сцепленного наследования, его нарушений позволило Т. X. Моргану создать хромосомную теорию наследственности. Она была дополнена современными фактами исследований генетики и цитологии.

Основные положения хромосомной теории наследственности:
– гены расположены в хромосомах, каждый ген имеет определенное место (локус) в хромосоме;
– гены в хромосомах расположены линейно;
– гены одной хромосомы образуют группу сцепления; количество групп сцепления равняется гаплоидному набору хромосом и постоянно для каждого вида;
– аллельные гены находятся в одинаковых локусах в гомологичных хромосомах;
– между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
– расстояние между генами в хромосомах пропорционально проценту кроссинговера между ними; чем дальше гены один от другого, тем чаще между ними случается кроссинговер;
– гены относительно стабильны, но могут изменяться в результате мутационного процесса;
– каждый биологический вид имеет определенный набор хромосом (кариотип).

Признаки большинства формируются с участием нескольких генов, взаимодействие между которыми отражается на проявлении фенотипа.

Типичные примеры взаимодействия аллельных генов – это полное доминирование, промежуточный характер наследования.

Но в процессе развития организма в сложные взаимодействия между собой вступают и неаллельные гены. Наиболее известные взаимодействия – комплементарность, эпистаз и полимерия.

Существует такое явление, когда на проявление состояний разных признаков влияет одна аллель. Называется оно множественным действием аллелей. Например, при заболевании человека арахнодактилией (человек имеет удлиненные пальцы конечностей, похожие на конечности паука) наблюдаются пороки сердца и неправильное положение хрусталика глаза. Арахнодактилия обусловлена мутацией доминантной аллели. Заболевание галактоземеем связано с рецессивной мутацией гена, который кодирует фермент, необходимый для усвоения клетками галактозы (молочного сахара). Вместе с заболеванием у людей развивается полоумие, цирроз печени, слепота.

Хромосомной теорией наследования именуют теорию, доказывающую материальную основу наследственности в виде хромосом. Здесь находятся гены, обособленные клеточным ядром. Благодаря свойствам хромосом осуществляется преемственность свойств организмов по ряду поколений. Основоположником хромосомной теории является Т.Г. Морган, который вместе со своими учениками установил:

  • локализацию генов в хромосомах;
  • зависимость частоты кроссинговера между гомологичными хромосомами от расстояния между генами, локализованными в одной хромосоме;
  • наличие определенной последовательности в расположении генов по хромосомам;
  • сцепленное расположение близконаходящихся генов и образование ими сцепленных групп, равных числу гаплоидного хромосомного набора;
  • кроссинговер (обмен гомологичными участками) и его процентную частоту.

Важнейшим следствием указанной теории являются современные представления о генах, как о функциональных наследственных единицах. Сформировать хромосомной теории помогли и сведения, которые получены в результате наблюдения за генетикой пола.


Пол, как и любой другой признак организма, наследственно детерминирован. Важнейшая роль в генетической детерминации пола и в поддержании закономерного соотношения полов принадлежит хромосомному аппарату.

У раздельнополых организмов (животных и двудомных растении) соотношение полов обычно составляет 1:1, то есть мужские и женские особи встречаются одинаково часто. Это соотношение совпадает с расщеплением в анализирующем скрещивании, когда одна из скрещиваемых форм является гетерозиготной (Аа), а другая — гомозиготной по рецессивным аллелям (аа). В потомстве в этом случае наблюдается расщепление в отношении 1Аа:1аа. Если пол наследуется по такому же принципу, то вполне логично было бы предположить, что один пол должен быть гомозиготным, а другой — гетерозиготным. Тогда расщепление по полу должно быть в каждом поколении равным 1:1, что и наблюдается в действительности.

При изучении хромосомных наборов самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Так, у самки дрозофилы имеются две палочковидные хромосомы, а у самца — одна такая же палочковидная, а вторая, парная первой, — изогнутая. Такие хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми хромосомами. Те из них, которые являются парными у одного из полов, называют X-хромосомами (например, у дрозофилы и млекопитающих) или Z-хромосомами (например, у птиц). Непарная половая хромосома, имеющаяся у особей только одного пола, была названа У-хромосомой (у дрозофилы и млекопитающих) или W-хромосомой (у птиц). Хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Следовательно, у дрозофилы особи обоих полов имеют по шесть одинаковых аутосом плюс две половые хромосомы (ХХ у самок и XY у самцов).

Пол, имеющий различные половые хромосомы (X и У), образует гаметы двух типов (половина с X-хромосомой и половина с У-хромосомой), то есть, является гетерогаметным, а пол, содержащий в каждой клетке одинаковые половые хромосомы (X-хромосомы), — гомогаметным.

Открытие половых хромосом и установление их роли в определении пола послужило важным доводом в пользу того, что хромосомы определяют признаки организма.

Урок 15. Сцепленное наследование генов

Основная статья: Определение пола

От чего же зависит рождение мужских и женских особей? Рассмотрим это на примере определения пола у дрозофилы. В ходе гаметогенеза у самок образуется один тип гамет, содержащий гаплоидный набор аутосом и одну X-хромосому. Самцы образуют два типа гамет, половина из которых содержит три аутосомы и одну X-хромосому (ЗА+Х), а половина — три аутосомы и одну У-хромосому (ЗА+У). При оплодотворении яйцеклеток (ЗА+Х) сперматозоидами с X-хромосомами будут формироваться самки (6А+ХХ), а от слияния яйцеклеток со сперматозоидами, несущими У-хромосому, — самцы (6A+XY). Поскольку число мужских гамет с X- и У-хромосомами одинаково, то и количество самцов и самок тоже одинаково. В данном случае пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

Сходный способ определения пола (XY-тип) присущ всем млекопитающим, в том числе и человеку, клетки которого содержат 44 аутосомы и две X-хромосомы у женщин либо XY-хромосомы у мужчин.

Таким образом, XY-тип определения пола, или тип дрозофилы и человека, — самый распространенный способ определения пола, характерный для большинства позвоночных и некоторых беспозвоночных. Х0-тип встречается у большинства прямокрылых, клопов, жуков, пауков, у которых Y-хромосомы нет вовсе, так что самец имеет генотип Х0, а самка — XX.

У всех птиц, большинства бабочек и некоторых пресмыкающихся самцы являются гомогаметным полом, а самки —- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола; при этом набор хромосом самцов обозначают символом ZZ, а самки — символом ZW или Z0.

Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую — ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО — самцы, а с набором ХХУ — самки (у человека — наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). (Особи со всеми этими хромосомными аберрациями у дрозофилы стерильны). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом.

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется. Например, у дрозофилы гены, локализованные в X-хромосоме, как правило, не имеют аллелей в У-хромосоме. По этой причине рецессивные гены в X-хромосоме гетерогаметного пола практически всегда проявляются, будучи в единственном числе.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Явление наследования, сцепленного с полом, было открыто Т. Морганом у дрозофилы.

Х- и У-хромосомы у человека имеют гомологичный (псевдоаутосомный) участок, где локализованы гены, наследование которых не отличается от наследования аутосомных генов.

Помимо гомологичных участков, X- и У-хромосомы имеют негомологичные участки. Негомологичный участок У-хромосомы, кроме генов, определяющих мужской пол, содержит гены перепонок между пальцами ног и волосатых ушей у человека. Патологические признаки, сцепленные с негомологичным участком У-хромосомы, передаются всем сыновьям, поскольку они получают от отца У-хромосому.

Негомологичный участок X-хромосомы содержит в своем составе ряд важных для жизнедеятельности организмов генов. Поскольку у гетерогаметного пола (ХУ) X-хромосома представлена в единственном числе, то признаки, определяемые генами негомологичного участка X-хромосомы, будут проявляться даже в том случае, если они рецессивны. Такое состояние генов называется гемизиготным. Примером такого рода X-сцепленных рецессивных признаков у человека являются гемофилия, мышечная дистрофия Дюшена, атрофия зрительного нерва, дальтонизм (цветовая слепота) и др.

Гемофилия — это наследственная болезнь, при которой кровь теряет способность свертываться. Ранение, даже царапина или ушиб, могут вызвать обильные наружные или внутренние кровотечения, которые нередко заканчиваются смертью. Это заболевание встречается, за редким исключением, только у мужчин. Было установлено, что обе наиболее распространенные формы гемофилии (гемофилия А и гемофилия В) обусловлена рецессивными генами, локализованными в X-хромосоме. Гетерозиготные по данным генам женщины (носительницы) обладают нормальной или несколько пониженной свертываемостью крови.

Фенотипическое проявление гемофилии у девочек будет наблюдаться в том случае, если мать девочки является носительницей гена гемофилии, а отец — гемофиликом. Подобная закономерность наследования характерна и для других рецессивных, сцепленных с полом признаков.

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин — 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Основная статья: Карты хромосом

Т. Морган и его сотрудники К. Бриджес, А. Г. Стертевант и Г. Дж. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии, которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в здравоохранении и медицине. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса.

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

  • Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
  • Гены расположены в хромосоме в линейной последовательности.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Бизнес: • Банки • Богатство и благосостояние • Коррупция • (Преступность) • Маркетинг • Менеджмент • Инвестиции • Ценные бумаги: • Управление • Открытые акционерные общества • Проекты • Документы • Ценные бумаги — контроль • Ценные бумаги — оценки • Облигации • Долги • Валюта • Недвижимость • (Аренда) • Профессии • Работа • Торговля • Услуги • Финансы • Страхование • Бюджет • Финансовые услуги • Кредиты • Компании • Государственные предприятия • Экономика • Макроэкономика • Микроэкономика • Налоги • Аудит
Промышленность: • Металлургия • Нефть • Сельское хозяйство • Энергетика
Строительство • Архитектура • Интерьер • Полы и перекрытия • Процесс строительства • Строительные материалы • Теплоизоляция • Экстерьер • Организация и управление производством

Бытовые услуги • Телекоммуникационные компании • Доставка готовых блюд • Организация и проведение праздников • Ремонт мобильных устройств • Ателье швейные • Химчистки одежды • Сервисные центры • Фотоуслуги • Праздничные агентства

Черепаховые («трехцветные») кошки имеют смешанную черную и рыжую окраску шерсти. Очень часто у них бывают и белые пятна, но они наследуются независимо от черепаховой окраски, так как определяются другим геном. Трехцветные кошки без белых пятен имеют рыжие полосы или пятна на черном фоне. Все они самки, и в их потомстве одна половина котят мужского пола имеет черную окраску, а другая — рыжую; половина котят женского пола всегда трехцветные, другая половина (в зависимости от окраски отца) — черные или рыжие.

Как объясняется этот необычный тип наследования? Вы, наверное, уже догадались, что это как-то связано с половыми хромосомами. И, действительно, подобный способ передачи признаков называется наследованием, сцепленным с полом.

Гены, сцепленные с полом, находятся в Х-хромосоме. Они отличаются от генов аутосом тем, что у организмов гетерогаметного пола (XY) они не имеют партнеров; Y-xpoмосома вообще несет очень мало генов. Организмы гетерогаметного пола не могут поэтому быть гетерозиготными по генам, сцепленным с полом.

Черная и рыжая окраска кошек обусловлена аллелями сцепленного с полом гена. Ни один из них не доминирует над другим, и поэтому в гетерозиготе проявляется и черная, и рыжая окраска, т. е. кошка оказывается трехцветной. Этим объясняется, что все трехцветные кошки являются самками. Поскольку у млекопитающих самец имеет Х- и Y-хромосомы, он не может быть гетерозиготным по черной и рыжей окраске.

В записанных в табл. 11 генотипах аллели, определяющие черную и рыжую окраску, обозначены буквами В и b. Y-хромосома не несет аллелей этого гена, поэтому самец имеет только один аллель.

Хорошо известен и довольно широко распространен у человека ген, сцепленный с полом, который вызывает так называемую цветовую слепоту (дальтонизм). Дальтоники не отличают красный цвет от зеленого, хотя они сами узнают об этом нередко лишь после специальных обследований. Красный и зеленый свет или окрашенные предметы обычно отличаются не только по цвету, но и по яркости; так, например, водитель, страдающий дальтонизмом, тем не менее различает сигналы светофора.

Ген, вызывающий дальтонизм (сb), рецессивен по отношению к своему нормальному аллелю. В табл. 12 записаны возможные генотипы и соответствующие им фенотипы.

Хромосомная теория наследственности. Урок 6

У птиц, в отличие от млекопитающих, гетерогаметным является женский пол (XY). Поэтому все правила наследования признаков, сцепленных с полом, для самцов и самок млекопитающих у птиц, наоборот, относятся соответственно к самкам и самцам. Так, курица не может быть гетерозиготной по гену, сцепленному с полом Она наследует все гены, сцепленные с полом, от отца и передает их только своим сыновьям. Петух, наоборот, может быть гетерозиготным по генам, сцепленным с полом; он получает эти гены от обоих родителей и передает их как сыновьям, так и дочерям.

Для получения наследования крест-накрест у птиц самца, гомозиготного по рецессивному гену, сцепленному с полом, скрещивают с самкой, несущей доминантный аллель этого гена. Хорошим примером является скрещивание между петухом, имеющим сплошную окраску, и «полосатой» курицей (с белыми полосами). Ген, определяющий белые полосы, сцеплен с полом, он доминантен. Обозначив его буквой В, запишем это скрещивание:

1. Гены, находящиеся в Х-хромосоме, называются сцепленными с полом. У них нет партнерных генов в Y-хромосоме.

2. Наследование признаков, сцепленных с полом, у видов (таких, как дрозофила и млекопитающие), мужской пол которых является гетерогаметным (XY), подчиняется следующим правилам.

Самцы не могут быть гетерозиготными по генам, сцепленным с полом. Любой ген, доминантный или рецессивный, всегда проявляет свое действие у самцов. В тех случаях, когда из поколения в поколение передается рецессивная аномалия, сцепленная с полом, нормальные самцы не несут этого гена и, естественно, не могут его передавать следующим поколениям.

Самки могут быть гомозиготными или гетерозиготными по генам, сцепленным с полом. При наследовании рецессивной аномалии, сцепленной с полом, фенотипически нормальные самки могут передавать аномальный ген своему потомству. Самец наследует гены, сцепленные с полом, от матери и передает их своим дочерям. Самка наследует гены, сцепленные с полом, от обоих родителей и передает их как сыновьям, так и дочерям.

У видов, подобных птицам, женский пол которых гетерогаметен, приведенные выше правила наследования для самцов справедливы для самок, и, наоборот, правила наследования для самок справедливы для самцов.

1. Каких детей можно ждать от брака: а) между нормальным мужчиной и женщиной, страдающей дальтонизмом; б) между мужчиной и женщиной, каждый из которых страдает дальтонизмом, и в) между мужчиной, страдающим дальтонизмом, и нормальной женщиной, отец которой был дальтоником?

2. У некоторых пород домашней птицы серебристое (белое) и золотистое (коричневое) оперение определяется парой генов, сцепленных с полом. Ген серебристого оперения (S) доминирует над геном золотистого оперения (s). Как нужно проводить скрещивание, чтобы можно было определять пол вылупившихся цыплят по их пуховому оперению?

Сцепленное наследование — скоррелированное наследование определённых состояний генов, расположенных в одной хромосоме.

Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения Томаса Моргана показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана Альфредом Стёртевантом в 1913 году на материале Drosophila melanogaster.

Исследования Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрёстом хромосом, или кроссинговером. Кроссинговер наблюдается в мейозе, он обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, как и сцепления генов, характерно для животных, растений, микроорганизмов. Исключения составляют самцы дрозофилы и самки тутового шелкопряда. Кроссинговер обеспечивает рекомбинацию генов и тем самым значительно усиливает роль комбинативной изменчивости в эволюции. О наличии кроссинговера можно судить на основе учёта частоты возникновения организмов с новым сочетанием признаков.

Соответственно организмы, возникающие от сочетания кроссоверных гамет, называются кроссоверными, или рекомбинантами, а возникающие от сочетания некроссоверных гамет — некроссоверными, или нерекомбинантными. Явление кроссинговера, как и сцепление генов, можно рассмотреть в классическом опыте Т. Моргана по наследованию у дрозофилы признаков цвета тела и длины крыльев — признаков, контролируемых генами, расположенных в одной аутосоме. На основе факта сцеплённого наследования Т. Морган сформулировал тезис, вошедший в генетику под названием правила Моргана: гены, локализованные в одной хромосоме, наследуются сцепленно, причём сила сцепления зависит от расстояния между генами.

Изучение сцепленного наследования у человека затруднено. Тем не менее, можно назвать некоторые случаи сцепленного наследования:

Х-сцепленное наследование принято делить на Х-сцепленное рецессивное и Х-сцепленное доминантное.

Х-сцепленное рецессивное наследование

Поскольку мужчины имеют только одну хромосому Х, они являются гемизиготными по Х-сцепленным генам. Х-сцепленные рецессивные болезни проявляются у мальчиков, которые имеют только один мутантный аллель, а передаются здоровыми гетерозиготными женщинами-носительницами их сыновьям. Пораженные мужчины, в свою очередь, передают мутантный ген своим дочерям – облигатным носительницам, но не сыновьям. Этот тип передачи в родословной иногда называют «диагональным» (рис. 12).

А1. Скрещивание, при котором родительские формы отличаются по двум парам признаков

1) полигибридное
2) моногибридное
3) тригибридное
4) дигибридное

А2. Соотношение по фенотипу 9 : 3 : 3 : 1 соответствует

1) закону Моргана
2) закону расщепления
3) закону независимого наследования признаков
4) закону единообразия первого поколения

А3. Гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцепленно. Это:

1) первый закон Менделя
2) закон Моргана
3) третий закон Менделя
4) закон Вавилова

А4. Сцепление генов не бывает абсолютным, так как нарушается в результате

1) кроссинговера при мейозе
2) взаимодействия неаллельных генов
3) независимого расхождения хромосом при мейозе
4) случайного расхождения хроматид в митозе

А5. Локус — это

1) форма существования гена
2) место гена в хромосоме
3) 1% кроссинговера
4) ген половой хромосомы

А6. Хромосомы, одинаковые у самцов и самок, — это

1) центромеры
2) полирибосомы
3) половые хромосомы
4) аутосомы

А7. Из зиготы разовьется девочка, если в ней окажется хромосомный набор

1) 44 аутосомы + XX
2) 23 аутосомы + X
3) 44 аутосомы + XY
4) 22 аутосомы + Y

А8. Стойкое изменение генотипа, происходящее под действием факторов внешней и внутренней среды, — это

1) фенотип
2) геном
3) мутация
4) норма реакции

А9. Оцените справедливость утверждений.

А. Модификационная изменчивость возникает у организмов под влиянием условий среды и способствует формированию разнообразных фенотипов.
В. Модификационная изменчивость является реакцией организма на изменяющиеся условия окружающей среды и приводит к изменению генотипа.

1) верно только А
2) верно только В
3) верны оба утверждения
4) оба утверждения неверны

А10. Совокупность всех наследственных генов клетки или организма — это

1) фенотип
2) геном
3) генотип
4) генофонд

В1. Соотнесите виды мутаций с их особенностями.

ОСОБЕННОСТЬ МУТАЦИИ

А Удвоение участка хромосомы
Б. Замена нуклеотида
В. Выпадение участка хромосомы
Г. Выпадение нуклеотида
Д. Вставка нуклеотида
Е. Поворот участка хромосомы на 180°

ВИД МУТАЦИИ

1. Генная
2. Хромосомная

Запишите выбранные цифры под соответствующими буквами.

С1. Фенилкетонурия (ФКУ) — заболевание, связанное с нарушением обмена веществ (в), и альбинизм (а) наследуются как рецессивные аутосомные несцепленные признаки. В семье мать и отец дигетерозиготны по генам альбинизма и ФКУ. Определите генотипы родителей. Составьте схему скрещивания, генотипы и фенотипы возможного потомства и вероятность рождения детей­ альбиносов, больных ФКУ.

С2. Мужчина, страдающий дальтонизмом (признак сцеплен с X-хромосомой), женился на женщине с нормальным зрением, но имеющей отца-дальтоника. Определите генотипы мужчины и женщины. Составьте схему решения задачи. Определите генотипы и фенотипы возможного потомства. Определите, какова вероятность рождения сына-дальтоника.

С3. У человека группы крови систем AB0 контролируются тремя аллелями одного гена — J0, JA, JB. Они формируют шесть генотипов J0 J0 — первая группа, JA J0 или JA JA — вторая группа , JB J0 или JB JB — третья группа и JA JB — четвертая. Положительный резус-фактор R доминирует над отрицательным r. У матери четвертая группа крови (JA JB) и положительный резус (гомозигота), а у отца вторая (JA J0) и отрицательный резус. Определите генотип родителей, возможные группы крови, резус-фактор и генотип потомков. Какова вероятность наследования ребенком группы крови матери и положительного резус-фактора?

А1. Третий закон Г. Менделя называется законом

1) независимого наследования признаков
2) чистоты гамет
3) гомологических рядов в наследственной изменчивости
4) единообразия первого поколения

А2. При скрещивании растений гороха посевного с генотипами aaBB и AAbb получится потомство с генотипом

1) AaBB
2) aaBb
3) AaBb
4) AABb

А3. Сцепленными называют гены, лежащие в

1) одной гамете
2) гомологичных хромосомах
3) одной хромосоме
4) негомологичных хромосомах

А4. Кроссинговер — это

1) сближение гомологичных хромосом в мейозе
2) хромосомная мутация
3) обмен идентичными участками гомологичных хромосом в мейозе
4) расхождение к полюсам клетки хроматид в митозе

А5. Хромосомный набор половой клетки у женщины

1) 46 хромосом
2) 22 аутосомы и X-хромосома
3) 44 аутосомы и две половые хромосомы
4) 21 аутосома и две X-хромосомы

А6. Эволюционно закрепленные адаптивные реакции организма в ответ на изменение условий внешней среды при неизменном генотипе — это

1) мутационная изменчивость
2) модификационная изменчивость
3) комбинативная изменчивость
4) хромосомная изменчивость

А7. Нормой реакции является (являются)

1) пределы мутационной изменчивости признака
2) комбинативная изменчивость
3) пределы модификационной изменчивости признака
4) модификационная изменчивость

А8. Генетически близкие виды и роды имеют сходные мутации. Это

1) закон сцепленного наследования Т. Моргана
2) закон расщепления Г. Менделя
3) биогенетический закон Э. Геккеля и Ф. Мюллера
4) закон гомологических рядов в наследственной изменчивости Н.И. Вавилова

А9. Оцените справедливость утверждений.

А. В основе генных мутаций лежат изменения в структуре молекулы ДНК, связанные с выпадением или добавлением одного нуклеотида.
Б. Генные мутации обусловлены увеличением числа хромосом в клетке и порядком расположения генов в хромосоме.

1) верно только А
2) верно только В
3) верны оба утверждения
4) оба утверждения неверны

А10. Совокупность всех признаков организма — это

1) фенотип
2) генотип
3) ген
4) геном

В1. Установите соответствие между видами изменчивости и их характеристиками.

ХАРАКТЕРИСТИКА ИЗМЕНЧИВОСТИ

А. Появляется лишь у отдельных особей
Б. Проявляется у многих особей вида
В. Называется также фенотипической
Г. Передается по наследству
Д. Приводит к внезапному изменению генетического материала
Е. Возможна в пределах нормы реакции

ВИД ИЗМЕНЧИВОСТИ

1. Мутационная
2. Модификационная

Запишите выбранные цифры под соответствующими буквами.

С1. У человека ген нормальной пигментации кожи (A) доминантен по отношению к гену альбинизма (a). Нормальный слух обусловлен доминантным геном, а наследственная глухонемота определяется рецессивным геном. В семье мать и отец не альбиносы и не глухонемые, но ди­гетерозиготны по этим генам. Составьте схему решения задачи, определите генотипы родителей, фенотипы и ге­нотипы возможного потомства и вероятность рождения детей-неальбиносов и не страдающих глухонемотой.

С2. Гены окраски шерсти кошек расположены в X-хромосоме. Рыжая окраска определяется Xb, а черная — XB, гетерозиготные особи имеют черепаховую окраску. От рыжего кота и черной кошки родились два черепаховых и два черных котенка. Определите генотипы родителей, потомства и возможный пол котят. Составьте схему решения задачи.

Call-центр Геномед ежедневно отвечает на Ваши вопросы, оказывает консультационную поддержку и помощь в координации действий

Одна пара хромосом сильно отличается от остальных 22. Дело в том, что она отвечает за половую принадлежность организма. Если в ней имеются две одинаковых больших хромосомы (их еще называют X-хромосомами), то зародыш будет развиваться по женскому пути. Если же в этой паре имеется одна большая и одна маленькая (Y-хромосома), то организм получает мужской пол и соответствующие признаки.

Те хромосомы, которые присутствуют у всех особей вида независимо от половой принадлежности, называются аутосомами. Они отвечают за огромное количество белков, ферментов и иных веществ. Однако отличие между аутосомами и половыми хромосомами заключается не только в названии. Расположение гена на половой хромосоме заметным образом меняет характер наследования. При этом появляется возможность зачать либо здорового, либо больного ребенка, что крайне важно при планировании семьи.

В случае аутосомных заболеваний патология может передаваться всем детям без исключения. Для случаев сцепленного с полом наследования это положение не выполняется, поскольку ген располагается не на аутосоме.

При нахождении гена в Y-хромосоме кодируемый им признак (или патология) может появиться только у гетерогаметного пола (то есть у всех детей-мальчиков). Из-за очень небольшого количества генов, находящихся на Y-хромосоме, подавляющее большинство сцепленных с полом заболеваний связано с X-хромосомой. С Y хромосомой сцеплены некоторые нарушения половой дифференцировки, поскольку именно на ней находится специальный ген SRY, определяющий развитие яичка и принадлежность организма к мужскому полу.

В то же время при попадании гена на X-хромосому наследование происходит более сложным образом. Так, доминантные версии мутации чаще проявляются в гомогаметном поле, которым у человека является женский пол. Рецессивные изменения, напротив, будут более заметны у организмов с гетерогаметным (мужским) полом. Причина подобной неравномерности заключается в том, что рецессивному гену для проявления в XX генотипе требуется наличие двух копий измененного гена, тогда как в XY-генотипе у рецессивного гена отсутствует подавляющая его нормальная версия, поэтому соответствующие симптомы проявляются проще.

Следует также учитывать наличие механизма инактивации одной из X хромосом. При нормальном развитии организма из каждой пары X-хромосом остается только одна. Соответственно, если будет инактивирована версия с аномальным геном, даже доминантный признак не сможет проявиться.

Примерами наследования, сцепленного с X-хромосомой, могут служить дальтонизм и гемофилия. Оба эти заболевания являются рецессивными, причем соответствующие гены находятся в X хромосоме. Статистика подтверждает тот факт, что подобные заболевания чаще проявляются у мужчин, чем у женщин. Кроме того, при наличии одной копии рецессивного гена женщина остается здоровой, но является носительницей заболевания.

Для XR заболеваний тяжесть может изменяться достаточно широко. Возможно образование достаточно легких нарушений, практически не влияющим на жизнеспособность организма. В частности, некоторые алопеции (облысение) являются именно такими мутациями.

На другом краю шкалы интенсивности находятся формы, сводящиеся к генетическим леталям, то есть мутациям, приводящим к смерти организма. Так, синдром Леша-Найшаха является именно таким. Треть случаев возникновения летали объясняется новой мутацией. Поэтому генетическое консультирование женщин, у которых в родословной не наблюдалось явных указаний на заболевания, становится достаточно трудным процессом.

Отдельную группу составляют XR-болезни, возникающие при наличии рецессивного гена, который становится летальным только при гомо- или гемизиготном состоянии. В некоторых случаях установить, что мутантный ген находится именно на Х-хромосоме, при помощи цитогенетических, биохимических или молекулярно-биологических методах диагностики невозможно. Болезнь при этом ведет себя идентично аутосомно-доминантным заболеваниям, наследование которых определяется полом. В частности, для тестикулярной феминизации не имеется точного подтверждения сцепления с X-хромосомой, и тем не менее ее обычно относят к XR-болезням.

Если гетерозиготная женщина, являющаяся носительницей дефекта XR-типа, понесет ребенка от здорового мужчины, то с вероятностью 50 процентов у сыновей разовьется заболевание. В то же время среди дочерей 50% будут здоровыми носительницами гена (то есть повторят ситуацию матери).

Если у женщины не имеется XR гена, однако он присутствует в генотипе мужчины, то все сыновья будут здоровы. Все дочери также будут здоровы (если рецессивная форма не проявляется), в то же время являясь носительницами.

К эндокринным болезням XR-типа принято относить адренолейкодистрофию (при этом могут развиваться различные клинические формы), врожденный идиопатический гипопитуитаризм, некоторые редко встречающиеся формы диабета и т.д.

Такие заболевания менее распространены, чем XR патологии. При этом они с большой вероятностью вызывают внутриутробную гибель плода мужского пола с гемизиготностью по мутантному признаку. Поэтому некоторые заболевания, также сопровождающиеся частыми самопроизвольными прерываниями беременности, считаются порожденными дефектами типа XD (к примеру, очаговая мезоэктодермальная дисплазия и синдром Франческетти-Ядассона).

Если у женщины имеется гомозиготный доминантный ген нелетального характера, то все ее дети будут получать одну версию мутационного изменения. Для гетерозиготного случая по наследству ген-мутант получит половина детей, независимо от пола. Гемизиготные мужчины могут передать такой аллель только дочерям (причем, всем без исключения). Этим фактом объясняется наблюдаемая статистика: если в семье имеется нелетальный XD-дефект, то будет отмечаться преобладание больных женщин.

К эндокринными XD болезням принято относить отдельные формы псевдогипопаратиреоза и нефрогенный сахарный диабет.

Некоторые заболевания, чье наследование сцеплено с X-хромосомой, успешно поддаются пренательной диагностике, причем можно даже выяснить гетерозиготность родителя. Для них также могут создаваться методы лечения. При невозможности точного определения генетического дефекта (к примеру, из-за того, что соответствующего молекулярного зонда нет в наличии), тестирование обычно ограничивается установлением пола ребенка. Если зародыш является мальчиком, то вероятность развития заболевания для него составляет 50 процентов (при условии, что родители находятся в группе риска по XR заболеванию). В таком случае на плечи родителей ложится решение, прерывать беременность или сохранять ее.

  • Работа с одаренными детьми
  • Детская одаренность
  • Проблемы одаренных детей
  • Сопровождение одаренных детей
  • Развитие творческих способностей


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *